Страница 30 из 35
А вот различие масс μ-мезона и электрона остается загадочным. Тяжелые частицы участвуют как в слабых, так и в сильных взаимодействиях, в то время как легкие частицы, очевидно, участвуют только в слабых взаимодействиях. Граница проходит через π-мезон; π-мезон— самая легкая из известных тяжелых частиц, участвующая в сильных взаимодействиях.
Однако μ-мезон, масса которого составляет примерно 3/4 массы π-мезона, не участвует в сильных взаимодействиях. Он участвует только в слабых взаимодействиях. Почему же, несмотря на свою массу, он не способен участвовать в сильных взаимодействиях? Увы, до сих пор на этот вопрос нет ответа. Почему отрицательный (μ-мезон в сущности так похож на электрон, а положительный μ-мезон — на позитрон? И если μ-мезоны действительно просто «тяжелые электроны», то почему их масса именно в 207 раз больше массы электрона — не больше и не меньше? До сих пор физики не получили ответа ни на один из этих вопросов.
Поскольку нам приходится рассматривать μ-мезоны как более тяжелые электроны и позитроны, то они должны считаться лептонами и подчиняться закону сохранения лептонного числа. Отрицательному μ-мезону, подобно электрону, приписали лептонное число +1, а положительному μ-мезону, подобно позитрону, -1. Физики установили, что при таком выборе во всех субатомных процессах с участием μ-мезонов закон сохранения лептонного числа выполняется. А поскольку μ-мезон является лептоном, чтобы не впадать в заблуждение, его назвали мюоном.Конечно, существуют отрицательные и положительные мюоны.
Что касается π-мезона, он оправдывает свое название. Прежде всего он и не лептон, и не барион. Если ему приписать нулевые лептонное и барионное числа, то во всех субатомных процессах с участием π-мезона законы сохранения лептонного и барионного чисел будут выполняться. Тем не менее, по аналогии с мюоном π-мезон стали все чаще и чаще называть пионом.Пион существует в двух зарядовых состояниях: положительный пион(π +), являющийся частицей, и отрицательный пион('π -), представляющий собой античастицу. В отличие от электрона и мюона пион может существовать и в виде незаряженной частицы — нейтрального пиона(π 0), которая немного легче заряженного пиона — ее масса в 264 раза больше массы электрона, а живет она значительно меньшее время, распадаясь в течение 1,9·10 -16 сек.Особенно необычно то, что нейтральный пион, подобно фотону, является своей собственной античастицей.
Если мюон только более тяжелая разновидность электрона, он должен дублировать его функции в атоме, что наблюдается в действительности. Электрон, находящийся во внешних областях атома, можно представить как частицу, вращающуюся вокруг атомного ядра по определенным орбитам, или как волну, имеющую определенные энергетические состояния. При определенных условиях отрицательные мюоны на короткое время занимают место электронов в атомах. (А положительные мюоны, вероятно, могут занять место вращающихся позитронов в атомах антивещества.) Атом, в котором отрицательный мюон замещает электрон, называется мезоатомом.
Конечно, разница масс мюона и электрона приводит к некоторым изменениям. Момент количества движения частицы, вращающейся вокруг ядра, кроме всего прочего зависит от массы частицы и ее расстояния от ядра.
Так как мюон в 207 раз тяжелее электрона, расстояние его от ядра должно быть меньше, чтобы при замене электрона мюоном момент количества движения не менялся.
В очень тяжелых атомах, внутренние электроны которых расположены близко к ядру, отрицательный мезон может так близко вращаться вокруг ядра, что почти вся его орбита будет находиться внутри ядра. Это обстоятельство еще раз показывает, насколько слабо он взаимодействует с протонами и нейтронами. (И снова мюон напоминает электрон, который тоже слабо взаимодействует с нуклонами. В противном случае ядро поглотило бы электроны и вещество в обычном его виде не существовало бы.)
Если мюон в мезоатоме представить в виде волны, имеющей определенные энергетические состояния, из-за большой массы энергия этих уровней соответственно выше, чем у электрона, а расстояние между соседними уровнями соответственно больше. Фотоны, излучаемые при переходе мюона в мезоатоме с одного энергетического уровня на другой, тоже имеют соответственно большую энергию, так что излучение мезоатомов находится в области рентгеновских лучей, в то время как обычные электронные атомы излучают видимую и ультрафиолетовую части спектра.
Конечно, мезоатомы так же нестабильны, как и мюоны, ибо когда мюон распадается в течение примерно одной миллионной доли секунды, атомное ядро заменяет его обычным электроном.
Глава 12. Мюонное нейтрино
Распад пиона
Если мюон действительно просто тяжелый электрон, при взаимодействии частиц он должен в точности копировать поведение электрона Например, отрицательный пион распадается, образуя отрицательный мюон, а положительный пион — положительный мюон, причем образование этих мюонов походит на рождение электронов. А поскольку электрон (или позитрон) рождается вместе с антинейтрино (или нейтрино), не будут ли возникать эти частицы и при образовании мюонов? Оказывается, нейтрино и антинейтрино действительно появляются при распаде мюонов, и мы можем записать:
'π -→ μ -+ 'ν
π +→'μ ++ ν.
В обоих случаях суммарное лептонное число продуктов распада равно нулю. Закон сохранения лептонного числа требует, чтобы лептонное число частиц перед распадом также было равно нулю. До распада существовали только отрицательный и положительный пионы, которым по этим соображениям следует приписать нулевые лептонные числа. По-видимому, из взаимодействия следует, что «закон сохранения мезонного числа» не существует, так как при распаде пиона мюон исчезает бесследно. Но физики и не стремятся приспособить свои теории к закону сохранения мезонов. В этом смысле их вполне устраивает естественное положение вещей.
Однако возникает законный вопрос: почему пион распадается только на мюон, если мюон является просто тяжелым электроном? Почему при распаде не образуется электрон? Оказывается, такой распад иногда имеет место.
В 1958 году было обнаружено, что один пион из 7000 распадается на электрон, а не на мюон:
'π -→ e -+ 'ν,
π +→'e ++ ν.
Почему мюоны и электроны образуются не в одинаковом количестве? Прежде всего, из-за разницы в массах. Мюон во много раз тяжелее электрона, поэтому почти вся энергия, освобождающаяся при распаде пиона, идет на образование массы, и только незначительная ее часть превращается в кинетическую энергию. В результате возникший мюон имеет скорость порядка 40 000 км/сек.При образовании электрона только очень незначительная часть энергии распада превращается в массу и электрон вылетает со скоростью более 290 000 км/сек,что очень близко к скорости света.
При создании теории слабых взаимодействий Ферми показал, что вероятность рождения мюона, а не электрона при распаде пиона зависит, в частности, от скорости образующейся частицы. Чем ближе скорость частицы к скорости света, тем меньше вероятность ее рождения. Именно поэтому медленный мюон образуется чаще, чем быстрый электрон.
Если не учитывать разности масс, можно сказать, что для любого известного взаимодействия частиц с участием электронов (или позитронов) имеются аналогичные взаимодействия, в которых участвуют отрицательные (или положительные) мюоны.
А одинаковы ли нейтрино и антинейтрино, образующиеся вместе с электронами и мюонами?
Вначале, когда сходство между электронами и мюонами не принимали во внимание и мюон считали особой частицей, не похожей на электрон, не было оснований думать, что легкие нейтральные частицы, образующиеся при рождении мюона, должны быть обязательно нейтрино. Было известно, что мюон намного тяжелее электрона, и поэтому казалось разумным предположить, что легкая нейтральная частица, возникающая вместе с ним, тяжелее невесомого нейтрино, но, несомненно, легче нейтрона. Поэтому некоторое время частицу с промежуточной массой физики называли «нейтретто».Подозревали даже, что она тяжелее электрона.