Страница 26 из 32
Глава 12 Метаболизм
Борьба с бактериальными заболеваниями во многом проще, чем с вирусными. Как уже было показано, бактерии проще размножаются в культуре. Бактерии более уязвимы. Живя вне клетки, они производят ущерб организму, отнимая у него питание либо высвобождая токсины. Однако их метаболизм (химический механизм) отличается от метаболизма клеток хозяина в нескольких аспектах. Поэтому всегда есть шанс, что они будут уязвимы к фармацевтическим средствам, разрушающим их метаболизм без серьезного повреждения клеток хозяина.
Начало использования химических средств против заболевания относится к далеким временам в истории человечества. С давних времен были известны лекари-травники. Их искусство передавалось из поколения в поколение. Использование хинина против малярии — самый известный пример «народного средства», которое со временем было принято на вооружение официальной медициной.
С приходом синтетических химических средств возможность их использования расширилась: теперь против каждой болезни можно было использовать свое лекарство.
Знаменитый бактериолог Эрлих работал в свое время над красками, окрашивающими бактерии, и, поскольку эти краски смешивались с некоторыми компонентами бактериальной клетки, они повреждали рабочий механизм клетки. Эрлих, понимая это, надеялся выявить краситель, достаточно сильно повреждающий клетки бактерий. И он его открыл: это был трипановый красный, уничтожающий трипаносом (простейших, вызывавших многие болезни, в том числе сонную болезнь).
Эрлих продолжал свой исследования, предположив, что способность повреждать клетки возбудителя связана с атомом азота в составе молекулы химиката. По химическим свойствам атомы мышьяка схожи с атомами азота, однако дают более сильный токсический эффект. Он экспериментировал с мышьяксодержащими органическими веществами, опробуя их один за другим.
В 1909 г. один из его помощников обнаружил, что вещество с номером 606 очень эффективно против сифилиса. Это вещество было названо сальварсаном (в наши дни чаще именуется арсфенамином).
Трипановый красный и сальварсан положили начало химиотерапии (излечению при помощи химических средств). Были надежды, что вскоре после этого будут обнаружены аналогичные средства практически против всех болезней. К сожалению, по прошествии нескольких десятилетий список применяемых в химиотерапии средств не пополнился.
Лишь в 1932 г. немецкий врач и биохимик Герхард Домагк (1895—1964), работая над красителями, обнаружил, что инъекции красителя с коммерческим названием пронтозил убивают стрептококки.
Он попытался поставить опыт с использованием пронтозила для людей. Его собственная дочь вскоре заразилась стрептококком после неудачной инъекции. Не помогало ничего, пока Домагк в отчаянии не опробовал свое средство на ребенке. Дочь быстро выздоровела. К 1935 г. мир узнал о новом лекарстве.
Вскоре группа французских бактериологов обнаружила, что действующее вещество в пронтозиле — сульфаниламид. Лекарство было названо чудом. Оно побеждало ряд смертельно опасных заболеваний, в частности пневмонию.
Наибольший успех ждал химиотерапию не в отношении синтетических веществ вроде арсфенамина и сульфаниламида, но в отношении натуральных продуктов. Американский микробиолог Рене-Жюль Дюбуа (род. 1901) работал над почвенными микроорганизмами. Почва принимала на себя сотни и тысячи трупов естественно умерших животных со всеми заболеваниями — и все же не была резервуаром инфекции. Очевидно, она обладает некими антибактериальными агентами. (Такие агенты позже были названы антибиотиками.)
В 1939 г. Дюбуа выделил первый антибиотик — тиротрицин — из почвенной бактерии. Антибиотик не был очень эффективен, однако вызвал живой интерес ученых. Десятилетие до того шотландский бактериолог Александер Флеминг написал интересный обзор, который теперь был вновь актуален.
В 1928 г. Флеминг на некоторое время оставил непокрытой крышкой культуру стафилококка. Вернувшись к работе, он уже готов был выбросить чашку с культурой, когда заметил, что на колонии бактерий, попала плесень и что в этих местах пятна колоний, растворились.
Флеминг выделил плесень и идентифицировал ее: это был грибок Penicillium notatum, обычная плесень, часто встречающаяся на хлебе. Флеминг решил, что плесневый грибок выделяет какой-либо компонент, останавливающий рост бактерий. Он назвал это вещество пенициллином. Он доказал, что вещество не вредит белым кровяным тельцам и другим клеткам человеческого организма.
В 1939 г., благодаря работам Дюбуа, интерес к пенициллину вновь возродился. Разразившаяся Вторая мировая война подстегнула разработку лекарства против бактериологического инфицирования ран. Австралийский патолог Хувард Уолтер Флори (1898—1968) вместе с биохимиком Эрнстом Борисом Чейном (1906—1979) выделили пенициллин, определили его структуру и поставили его производство на промышленную основу. К концу войны они работали во главе большой англо-американской совместной лаборатории. Успех пришел незамедлительно. Пенициллин был и остается основным оружием против инфекции.
После войны были обнаружены и разработаны для производства другие антибиотики. Американский бактериолог Сельман Абрахам Уоксман (род. 1888) систематизировал почвенные микроорганизмы.
В 1943 г. он выделил эффективный антибиотик против бактерий, не повреждаемых пенициллином. В 1945 г. он вышел на мировой рынок под названием стрептомицин.
В 1950-х годах были обнаружены так называемые антибиотики широкого спектра действия. Это — тетрациклины, выступавшие под торговыми марками «ахромицин» и «ареомицин».
Бактериальные инфекции были взяты под контроль, причем в таком масштабе, о котором люди и не мечтали поколение назад. Тем не менее, будущее не представлялось в розовом цвете. Естественный отбор работает таким образом, что выживают штаммы бактерий, устойчивые к антибиотикам. Поэтому со временем антибиотики становятся менее устойчивыми. Конечно, разрабатываются новые эффективные антибиотики. Однако эта битва с бактериями и не проиграна ~- но не будет выиграна, вероятно, никогда.
Различные химиотерапевтические агенты не поражают вирусы. Вирусы размножаются внутри живых клеток и могут быть уничтожены химической атакой только при уничтожении самой клетки. Однако можно направить атаку против многоклеточного существа — носителя вируса.
Например, вирус тифа переносит человеческая вошь, избавиться от которой тяжелее, чем от москита. Поэтому в Первую мировую войну тиф унес больше жизней, чем артиллерия с обеих сторон.
В 1935 г. швейцарский химик Пауль Мюллер (1899 — 1965) начал осуществлять исследование по обнаружению органического вещества, убивавшего насекомых и не вредящего теплокровным организмам. В сентябре 1939 г. он обнаружил вещество дихлордифенилтрихлорэтан (ДДТ).
В 1942 г. приступили к коммерческому производству ДДТ. Препарат применялся против тифозной вши во время войны, и впервые в истории человечества была остановлена зимняя эпидемия тифа. Это произошло в Японии в 1945 г., после применения в войсках ДДТ.
После войны ДДТ использовали против насекомых не только с целью предотвращения эпидемий, но и для спасения урожая. Позже на смену ему пришли менее токсичные и более эффективные препараты. Были также изобретены так называемые пестициды — химические средства борьбы с сорняками.
Но насекомые развивают природные штаммы, устойчивые против химикатов. Есть также доказательства того, что применение их нарушает экологический баланс. Это серьезная проблема. Изучение взаимосвязей в природе (наука экология) еще только на заре развития. Человечество изменяет природу в угоду своим сиюминутным интересам, но никогда нельзя быть уверенным, что эти изменения не обернутся ущербом для самого человечества.