Добавить в цитаты Настройки чтения

Страница 49 из 90

Необъяснимым остается и другое. В большинстве случаев строение охлажденных металлов становится экономичнее, атомы и молекулы упаковываются плотнее. В этом удивительном факте ученые убеждались не раз. Низкие температуры поступают с металлами так же, как высокие давления.

Этому правилу подчиняются литий, натрий и многие другие металлы.

А олово — нет. Оно поступает как раз наоборот. Аккуратные белые брусочки распухают и превращаются в рыхлое месиво.

Почему оно ведет себя именно так? Почему при охлаждении и деформации стремится занять побольше места? Ответа на это пока нет.

Но стоит ли об этом думать? Может быть, это вовсе не так важно?

Нет, и обращение олова в полупроводник, и увеличение его объема при охлаждении не случайность. Это, несомненно, проявление какой-то скрытой закономерности. И ученые трудятся над ее выявлением, ибо это необходимо для управления поведением металлов, для создания материалов с наперед заданными свойствами.

Ставя опыт с охлажденными металлами, харьковские ученые обнаружили совсем уж курьезное явление, объяснить которое поначалу не брались даже самые опытные теоретики.

Результаты опытов упорно настаивали на том, что металл в куске может обладать совсем иными свойствами, чем тот же самый металл, но... в виде пленки. На первый взгляд это кажется просто абсурдным, противоречащим всему опыту общения с металлами. Однако...

Как садовник сажает семена растений, так физики «сажали» атомы висмута и бериллия, натрия и калия на охлажденную жидким гелием пластинку. Сажали не торопясь, один за другим. Только так можно было получить действительно сверхтонкую пленку.

Изучая свойства бериллиевой пленки и пропуская через нее электрический ток, ученые оказались свидетелями непредвиденного эффекта. Пленка покорилась току, не оказав ему сопротивления.

На первый взгляд в этом явлении в наши дни уже нет ничего загадочного. Как гром средь бела дня оно поразило Каммерлинг-Оннеса в начале нашего века, когда, охладив ртуть до температуры жидкого гелия, он обнаружил в ней полное отсутствие сопротивления электрическому току. Явление сверхпроводимости действительно несколько десятилетий оставалось необъясненным. Но теперь, как мы уже сказали, трудами советских и зарубежных физиков создана стройная теория этого удивительного явления. И сейчас ученые безошибочно называют, металлы-сверхпроводники.

предугадывают их свойства, определяют возможные пути использования.

Тем более интересна «ошибка» с бериллием, который уверенно причисляли к металлам, ни при каких условиях неспособным к сверхпроводимости. Как ни охлаждали бериллий, присущая ему кристаллическая решетка препятствовала прохождению электрического тока.

И вдруг... Пленочка бериллия спутала все карты. Правда, раньше ученым был известен еще один металл — висмут, пленки которого вопреки правилам становились сверхпроводящими. Но это долго считалось единственным исключением из общего правила.

А теперь и бериллий. Два случая — это уже не исключение. Значит, бериллий и висмут — представители группы веществ, не подчиняющихся известным нормам поведения.





Что же заставляет их изменять свои свойства? — размышляли ученые. И нет ли здесь связи с явлением низкотемпературного полиморфизма при пластической деформации, которому, кстати, подвержены оба металла. Может быть, при принудительной конденсации атомов висмута и бериллия на охлажденную пластинку образуется искусственная решетка, склонная к сверхпроводимости?

На справедливость этих предположений указывал простой опыт. Когда исследователи многократно нагревали, а затем замораживали пленку, она постепенно теряла свойства сверхпроводника. Так как при этом она не подвергалась никакой деформации, ее атомы, возможно, постепенно возвращались к своему обычному порядку — восстанавливалась решетка, не склонная к сверхпроводимости.

Не кроется ли в том, что подметили харьковские ученые, намек на богатую перспективу направленного изменения свойств металлов? Если один и тот же металл может проявлять различные качества в зависимости от способа его получения, если его атомы можно заставить строиться по-разному, значит перед техникой будущего открываются замечательные возможности управления свойствами вещества.

Не только бериллий и висмут, железо тоже считалось металлом, абсолютно неспособным к сверхпроводимости. До недавнего времени никто ни при каких условиях не мог получить сверхпроводящее железо. Но это ученых не удивляло. Этому имеется весьма веское основание.

Дело в том, что сверхпроводимость и магнетизм — исконные враги. Они просто не переносят друг друга.

Силовые магнитные линии упорно избегают сверхпроводник. В этом убеждает элементарный опыт. Если на пути магнитного поля поместить проволочку в сверхпроводящем состоянии, магнитное поле обежит ее, как морская волна бревно. Но если быть очень настойчивым и, увеличивая силу магнитного поля, стремиться втолкнуть его внутрь проволоки, оно действительно проникнет туда, однако... состояние сверхпроводимости в проволоке исчезнет.

Таким образом, одной из особенностей низких температур является несовместимость сильного магнитного поля и состояния сверхпроводимости.

Поэтому, сами понимаете, железо, которое является материалом магнитным, никак не может стать сверхпроводником. Разве только железо немагнитное... А где вы видели немагнитное железо?

Правда, немагнитное железо в нагретом состоянии никого бы не удивило. Французский ученый Пьер Кюри давно заметил: нагретое выше определенной температуры железо всегда теряет магнитные свойства. Температура, при которой размагничиваются стальные магниты, называется точкой' Кюри. Она лежит выше семисот градусов. Но немагнитное железо в холодном состоянии! Возможно ли это? Не парадокс ли вообще сверхпроводящее железо?

И все-таки ученые получили его, получили вопреки научной логике, наперекор природе. Произошло это в Ленинградском физико-техническом институте Академии наук СССР в лаборатории низких температур. Поначалу не обошлось без сомнений. Вряд ли это возможно, говорили многие видавшие виды ученые, прочтя публикацию о получении сверхпроводящего железа. И как винить их за скептицизм? Сомнения поддерживал многовековой человеческий опыт.

...Люди издавна привыкли к замечательному свойству железа образовывать вокруг себя магнитное поле и подчиняться ему. Стрелка компаса, послушная магнитным силовым линиям Земли, смотрит одним концом на север. Да и каждый атом железа подобен такой стрелке, на одном конце таящей свой миниатюрный северный полюс, а на другом — южный.

В теле железа можно натолкнуться на маленькие области, в которых целые полчища магнитиков выстроены в строгом порядке. Все северные полюсы их смотрят в одном направлении, южные — в другом. Магнитные силы стрелочек складываются, и в этом маленьком участке образуется чрезвычайно сильное магнитное поле. Такие области названы доменами, и в каждом куске железа их множество. Есть области, где все магнитики так же дружно «смотрят» совсем в другую сторону.

По всей толще большого и маленького кусков железа чередуются магнитные области, ориентированные самым хаотическим образом. Магнитные поля внутри отдельных доменов очень сильны, но ориентированы совершенно хаотически и в среднем уравновешивают друг друга, поэтому силовые линии не выходят на поверхность металла. Вот почему, как сильно ни охлаждать кусок железа, сверхпроводником он не станет: сверхпроводимость разрушается сильными внутренними магнитными полями, всегда существующими в отдельных доменах.

Но физики-теоретики, которым ничего не стоит в своем воображении оставить от куска железа совсем крошечный кусочек, тоненькую пленочку или даже просто горсть атомов, а потом с помощью формул и уравнений ощупать их, заглянуть в самую сущность, и на этот раз выведали у железа секрет его сверхпроводимости.