Страница 12 из 42
И все-таки, в одном частном случае — среди микроорганизмов — ученые считают, что им удается видеть и регистрировать ход эволюции. В ответ на изобретение новых антибиотиков против болезнетворных бактерий возникают штаммы (группы микроорганизмов с четкими физиологическими особенностями), устойчивые к действию этих лекарств. С первой половины XX века идет постоянная гонка: медикам приходится все время изобретать новые лекарственные средства, которые быстро теряют эффективность из-за ускоренной эволюции микробов. Единственное, что останавливает от того, чтобы считать ее зримым процессом видообразования, — невозможность применить к бактериальному штамму понятия «вид». Стандартное определение гласит, что вид — это совокупность организмов, неспособных к скрещиванию с особями других видов или дающих при таких скрещиваниях бесплодное потомство. Но оказалось, что штаммы, относящиеся к одному и даже разным видам бактерий, могут обмениваться генетическим материалом друг с другом. Это явление назвали горизонтальным переносом генов. Благодаря миграции генов достижения одного вида микроорганизмов становятся доступными для другого — такую форму эволюции назвали ретикулярной, или сетчатой, чтобы подчеркнуть ее отличие от «классической», то есть древовидной, куда бактерии, похоже, не вписываются. Образно говоря, для бактерий нельзя построить эволюционное древо с общим корнем — у них родственные связи образуют запутанную сеть.
Парадоксы развития
Еще один феномен, который пока трудно объяснить с эволюционной точки зрения, — это сложность строения живого организма. Как, например, мог образоваться такой совершенный орган, как глаз? Дарвин, который хорошо знал зоологию и анатомию, на этот вопрос отвечал так. Органы, способные воспринимать свет, есть даже у самых простейших существ. Поэтому глаза можно выстроить в ряд по мере усложнения: от простых пигментных пятен или выстланных пигментом прозрачных кожных мешочков ланцетника до сложных фасеточных глаз насекомых и совершенной оптической системы человеческого глаза. Причем такой ряд легко создать и на основе глаз зародышей, что будет иллюстрацией к процессу их развития. Ну а какие преимущества в конкурентной межвидовой борьбе дают хорошо работающие глаза тем, у кого они есть, вряд ли нужно перечислять. Гораздо труднее оказалось для Дарвина объяснить происхождение электрических органов у рыб. Но если бы ему было известно, что почти все физиологические процессы имеют электрическую природу, он с легкостью это сделал бы.
Тем не менее проблема осталась — на молекулярном уровне. Даже у наиболее простых бактерий есть около 200 генов, каждый из которых состоит из сотен или тысяч нуклеотидов. Каждый ген отвечает за какую-то жизненно необходимую функцию, например за построение элементов клетки, производство и починку молекул ДНК, за транспорт пищи в клетку. Американский биохимик Майкл Бихи назвал это свойство живой системы «неуменьшаемой сложностью», из которого следует, что первая клетка должна была появиться сразу с двумя сотнями генов, чтобы стать жизнеспособной. Кстати, этот пример часто используют критики теории эволюции. Они говорят: раз биологи сами пришли к такому парадоксу, значит, они отрицают дарвинизм. В логике такой прием называется подменой тезиса и свидетельствует об ошибочном выводе — разумеется, ученые не отрицают дарвинизма, они ищут пути обхода «неуменьшаемой сложности». Действительно, случайное возникновение даже самой элементарной клетки путем перебора химических соединений маловероятно. Но мы мало знаем о том, как была организована ранняя жизнь на Земле и какие пути могли привести к возникновению клетки.
Проблему представляет собой и сложность многоклеточных организмов с десятками тысяч генов. Ведь материала, с которым «работает» естественный отбор, может не хватить. Особенно среди крупных животных, исчисляемых всего лишь тысячами особей, таких как киты или слоны. В 1957 году английский генетик Джон Холдейн рассчитал, что для замены в популяции каких-либо организмов только одного признака необходимо вести отбор в 300 поколениях — а признаков-то (генов) десятки тысяч! Возможно ли при такой маленькой скорости эволюции возникновение новых видов, различающихся не по одному, а по целому комплексу признаков? Позднее это затруднение назвали «дилеммой Холдейна». Кажущуюся невозможность удается преодолеть, если сменить математическую модель и отказаться от посылки, что признаки эволюционируют независимо друг от друга. Половой процесс и связанный с ним обмен генами может объединять в одной особи множество нежелательных признаков и позволяет выбраковывать их существенно быстрее, чем предполагалось в модели Холдейна.
С помощью генетики удалось решить и вопрос о направленном течении эволюции, который стоял в свое время довольно остро. Еще в XIX веке палеонтолог Эдуард Коуп обнаружил, что у разных видов ископаемых животных могли развиваться одинаковые признаки. Это указывало на то, что эволюция — процесс не случайный, но подчиняющийся каким-то внутренним, еще не открытым закономерностям. В XX веке схожую концепцию под названием «номогенез» развивал русский ученый Лев Берг. Но экспериментальные данные такой концепции противоречат. У животных, даже не близких родственно, есть много общих генов, они-то и определяют, казалось бы, независимое появление у разных видов сходных признаков. Поскольку гены похожи, то и изменяются (мутируют) они сходным образом. С этой точки зрения удалось объяснить «закон гомологических рядов в наследственной изменчивости», сформулированный в 1920 году Николаем Вавиловым, который обнаружил, что у разных видов злаков встречаются похожие формы. Например, у ржи и пшеницы колосья могут быть как с остью, так и без нее; междоузлия могут быть как окрашенными, так и нет. Этот закон обладает большой предсказательной силой: если у одного растения какого-то признака нет, но он есть у близкого ему вида — нужно искать, вполне вероятно, что его просто еще не обнаружили.
В статье, опубликованной в 2007 году в журнале Science, американские ученые констатировали, что шимпанзе — более «продвинутый» в генетическом отношении вид, нежели человек
Кто мы?
Генетика генетикой, но давайте посмотрим правде в глаза. Во всей этой истории большинство людей по-настоящему волнует лишь один вопрос — происхождение человека. Прав ли был Дарвин относительно близкого родства людей с человекообразными обезьянами? Судите сами. Анатомическое строение, физиологические и биохимические особенности, в частности строение молекулы гемоглобина, роднят нас с человекообразными обезьянами настолько, что сомневаться трудно. Ближе всех к человеку стоит шимпанзе, наше генетическое сходство настолько велико — 98%, что возникла идея в один род объединить человека и два известных вида шимпанзе: обыкновенного (Pan troglodytes) и карликового (Pan paniscus), также известного под названием бонобо. В 1991 году американский биолог Джаред Даймонд написал книгу об эволюции человека, которую так и назвал: «Третий шимпанзе». По его мнению, в зоологической систематике рода Homo правильнее использовать три вида: Homo troglodytes (человек пещерный, или шимпанзе обыкновенный), Homo paniscus (человек фавновый, или шимпанзе карликовый) и Homo sapiens.
По данным молекулярной филогенетики, эволюционные линии человека и шимпанзе разошлись примерно 6—7 миллионов лет назад. Мало того, сопоставив 14 000 генов человека и шимпанзе, ученые из Мичиганского университета под руководством Цзяньчжи Чжана пришли к выводу, что у шимпанзе эволюция на молекулярном уровне шла быстрее. То есть для того чтобы из предка, общего для шимпанзе и человека, получились сегодняшние виды, больше генов потребовалось изменить у шимпанзе. Так, может быть, вершина эволюции — это шимпанзе, а не человек? Тем более что с точки зрения биологии способность к рассудочной деятельности, выраженная у человека в большей мере, чем у других видов животных, не такое уж принципиальное отличие, и оно требует меньшего количества генетических перестроек, чем геном в целом.