Добавить в цитаты Настройки чтения

Страница 4 из 40



Игры для взрослых

Одиночные звезды в два раза легче нашего Солнца , останавливаются на этапе синтеза гелия. Более тяжелые звезды производят углерод и кислород, и только самые большие, превосходящие 10 солнечных масс, могут в конце жизни продолжить игру в элементы. После истощения запасов гелия их внутренние области сжимаются, разогреваются, и в них начинается «горение» углерода. Два ядра углерода, соединяясь, дают неон и альфа-частицу. Или натрий и протон. Или магний и нейтрон. Появившиеся протоны и нейтроны тоже не пропадают зря. Они идут в дело, превращая углерод в азот, кислород и, далее, за счет захвата альфа-частиц в неон, кремний, магний и алюминий. Таким образом, нам уже есть из чего сделать впоследствии твердь земную.

После углерода вне очереди начинает «гореть» неон, причем делает он это «неправильным» образом: вместо того, чтобы сразу слиться с каким-нибудь другим ядром и увеличить свою массу, ядра неона под действием особо энергичных гамма-квантов распадаются на кислород и альфа-частицу. А затем получаемые альфа-частицы, взаимодействуя с другими ядрами неона, дают магний. Так что в итоге на два ядра неона возникают одно кислородное и одно магниевое.

После истощения запасов неона ядро звезды становится кислородно-магниевым, оно снова поджимается, температура растет и игра продолжается. Теперь ядра кислорода, попарно сливаясь, превращаются в кремний или серу. Кроме того, появляется немного аргона, кальция, хлора и других элементов.

Следующий на очереди — кремний. Напрямую два ядра кремния слиться не могут — из-за большого заряда слишком велико электрическое отталкивание между ними. Поэтому начинает идти множество разных реакций с участием альфа-частиц. Термин «горение кремния» достаточно условен, поскольку разных каналов реакций в самом деле много. На этой стадии возникают разные элементы вплоть до железа.

Железо (и близкий к нему никель) выделяется из всех элементов тем, что у него максимальная энергия связи. Нуклоны нельзя упаковать эффективнее: и на то, чтобы разбить ядро железа на части, и на то, чтобы создать из него более тяжелые ядра, требуется затратить энергию. Поэтому первое время было непонятно, как может образование элементов в звездах идти дальше железа, и существование во Вселенной тяжелых ядер, как, например, у золота или урана, оставалось совершенно необъяснимым. Подход к объяснению был найден в середине 1950-х годов, когда были предложены сразу два механизма образования в звездах элементов тяжелее железа. Оба они основываются на способности ядер захватывать нейтроны.

Великие медленные короли

Первый из этих механизмов получил название медленного захвата нейтронов, или s-процесса (от англ. slow — «медленный»). Он протекает в конце жизни звезд с массой от 1 до 3 солнечных, когда они достигают стадии красного гиганта. Причем идет этот процесс не в плотном горячем ядре звезды, а в слоях, лежащих выше. У таких относительно легких звезд стадия гиганта имеет большую продолжительность, измеряемую десятками миллионов лет, и этого хватает для существенного преобразования вещества.

Отраженная в названии медлительность s-процесса связана с тем, что он протекает в течение длительного времени при низкой концентрации нейтронов. Однако и небольшое количество нейтронов надо откуда-то брать — никакого запаса этих частиц быть не может. В звездах-гигантах идет несколько видов реакций, в которых выделяются нейтроны. Например, углерод-13, захватив альфа-частицу, превращается в кислород-16, и при этом испускается нейтрон. Свободные нейтроны, поскольку им не мешает кулоновское отталкивание, легко проникают в ядра атомов и увеличивают их массу. Правда, если нейтронов станет слишком много, ядро потеряет устойчивость и развалится на части. Но поскольку свободных нейтронов в красных гигантах немного, у ядра есть время, чтобы относительно безболезненно ассимилировать пришельца, испустив при необходимости электрон. При этом один из нейтронов в ядре становится протоном, и заряд ядра на единицу увеличивается, что соответствует превращению одного элемента в другой — следующий по порядку в таблице Менделеева. Таким путем можно получить очень тяжелые элементы, например свинец и барий. Или технеций. В свое время открытие этого тяжелого и достаточно быстро распадающегося элемента в атмосферах красных гигантов было даже истолковано некоторыми учеными как свидетельство в пользу существования внеземных цивилизаций! На самом же деле он просто выносится из недр на поверхность за счет перемешивания вещества.



Когда жизнь такого красного гиганта подходит к концу, его ядро превращается в плотного белого карлика, а оболочка рассеивается в окружающем пространстве за счет звездного ветра или образования планетарной туманности. Тем самым межзвездная среда пополняется наработанными за время жизни звезды тяжелыми элементами, и постепенно химический состав Галактики эволюционирует за счет звездного нуклеосинтеза. К тому моменту, когда образовалась Солнечная система, этот процесс шел уже 8 миллиардов лет, и около 1% межзвездного вещества успело превратиться в тяжелые элементы, из которых, в частности, сложена наша планета.

Катализаторы звездной жизни

В массивных звездах переработка водорода в гелий идет иначе, нежели в звездах-карликах вроде Солнца. При температуре около 20 миллионов градусов работает так называемый углеродно-азотно-кислородный (CNO) цикл. Углерод в нем играет роль ядерного катализатора, а сам в реакциях не расходуется. Чтобы реакции были эффективны, его нужно совсем немного, но все же CNO-цикл возможен только в звездах современного химического состава, вещество которых уже обогатилось углеродом в ходе жизни предыдущих поколений звезд. Углерод-12 захватывает протон и превращается в азот-13, а тот, испустив позитрон, — в углерод-13. Далее, захватывая подряд два протона, он становится сначала азотом-14 и потом кислородом-15. Тот снова выбрасывает позитрон и превращается в азот-15, который, сталкиваясь с уже четвертым по счету протоном, распадается на альфа-частицу (то есть ядро гелия) и углерод-12. В итоге мы возвращаемся к исходному ядру углерода, но по пути превращаем 4 протона в ядро гелия. Правда, изредка (в одном из 880 случаев) на последнем этапе цикла азот-15 может слиться с протоном в устойчивое ядро кислорода-16. Это приводит к медленному расходованию катализатора-углерода.

Орден Феникса

Практически все атомы вашего тела в свое время побывали в недрах звезд. Многие из них пережили катастрофические взрывы сверхновых , и, более того, некоторые образовались именно в моменты таких взрывов. Мы, как феникс, родились из пепла, но из пепла звезд. Взрывы сверхновых очень важны уже потому, что это эффективный способ выбросить в космос наработанные в звезде элементы. Если итогом взрыва, как это чаще всего бывает, становится нейтронная звезда, в нее превращается только относительно небольшое ядро красного гиганта, состоящее в основном из железа и никеля. Например, при начальной массе звезды в 20 солнечных в нейтронную звезду превратится не более 7% вещества, все остальное выметается взрывом в космос и доступно для формирования новых светил.

Однако поддержанием этого космического круговорота вещества роль сверхновых не исчерпывается. Прямо во время взрыва в них могут образовываться новые элементы. Примерно 10 секунд новорожденная нейтронная звезда успевает побыть «алхимиком». Перед самым взрывом структура массивной звезды подобна луковице. Ядро окружено несколькими оболочками, состоящими из все более легких элементов. В тот самый момент, когда ядро начинает катастрофически сжиматься, превращаясь в нейтронную звезду или черную дыру, по лежащим выше слоям от центра наружу пробегает волна взрывного ядерного горения. В результате химический состав вещества сильно сдвигается в сторону тяжелых элементов.

Считается, что наиболее эффективно обогащают Вселенную тяжелыми элементами звезды с массами от 12 до 25 солнечных. Их железное ядро окружает мощная кремниево-кислородная оболочка, которая после сброса дает элементы от натрия до германия (включая железо). В более массивных звездах слишком много вещества, состоящего из тяжелых элементов, проваливается внутрь черной дыры, и наружу ускользают только достаточно легкие. Звезды поменьше, с массами в 8—12 солнечных, не обладают такой оболочкой, и поэтому элементов группы железа в них образуется мало. Зато... появляются много более тяжелые элементы.