Добавить в цитаты Настройки чтения

Страница 16 из 40

Чтобы эффективность установки была максимальной, ее надо разворачивать перпендикулярно ветру. В маленьких бытовых ветрогенераторах с этой задачей справляется хвостовой стабилизатор, действующий по принципу флюгера. Однако повернуть промышленный ветрогенератор общим весом в десятки, а то и сотни тонн такой стабилизатор уже не в силах, и эти функции возложены на специальную систему электронного управления рысканьем (поворотами по азимуту).

В карусельных ветряках такая система не нужна, и это одно из главных их преимуществ. Работа такой установки не зависит от направления ветра, а высота не ограничена теми максимальными 120 метрами, что останавливают проектировщиков крыльчатых установок. Вдобавок карусельные ветряки начинают работать при значительно меньшей скорости ветра, чем крыльчатые.

Устанавливаемый на крыше бытовой ветряк дает мощность до 1,5 кВт. При стоимости устройства около 5 тысяч фунтов стерлингов электричество получается в несколько раз дороже промышленного. Фото: SPL/EAST NEWS

Простейший карусельный ветряк используется в приборе для измерения скорости ветра — анемометре. На концах горизонтальной перекладины закреплены чашки. В одну из них ветер «задувает», а другую «обдувает» со дна. Ясно, что давление воздуха на первую чашку будет больше, чем на вторую. Перекладина начинает вращаться вокруг вертикальной оси, и чем сильнее ветер, тем быстрее. На ось можно насадить много таких перекладин, а еще удобнее прикрепить к ней высокие корытообразные лопасти. Теоретически их высота может измеряться хоть километрами.

Однако при всех плюсах карусельных ветряков коэффициент полезного использования силы ветра у крыльчатых конструкций пока значительно выше, поэтому и распространены они гораздо шире. Сейчас на их долю приходится более 90% всех промышленных энергоустановок в мире. Положение могут изменить ортогональные карусельные ветряки. В них лопасти-полубочки заменены вертикальными крыльями, сделанными по принципу самолетных. Такой ветродвигатель сначала надо закрутить с помощью какого-нибудь стороннего агрегата, зато, выйдя на рабочий режим, он теоретически способен развить мощность в 20 МВт, в то время как самые мощные «крыльчатки» выдают 5—6 МВт.

Ветровых генераторов построено уже немало. Одна только датская фирма Vestas Danich Wind Technology с начала 1980-х годов возвела по всему миру более 11 тысяч ВЭС. На Западе ветровая энергетика входит в число самых быстрорастущих отраслей энергодобычи. По данным Всемирной ветроэнергетической ассоциации (WWEA), суммарная установленная мощность ВЭС в мире увеличивается на 25—27% в год и в конце 2007-го достигла 94 ГВт — это примерно 1,3% от всего объема потребляемой человеком энергии. Тут, правда, надо учитывать, что из-за неравномерности ветровой нагрузки реальная энергоотдача ВЭС оказывается в 2—6 раз ниже установленной мощности. Тем не менее в некоторых странах, например в Дании , доля ветровой энергетики составляет более 20%. А в Испании 22 марта 2008 года дули такие сильные ветра, что местные ВЭС обеспечили в тот день 40,6% всего энергопотребления страны.

Безусловным лидером ветроэнергетики является Германия , где установлено более 22 ГВт ветровых мощностей. Здесь работают и самые крупные в мире ветрогенераторы мощностью 6 МВт (компания Enercon, 2005 год) и 5 МВт (REpower Systems, 2004 год). Высота башни 5-мегаваттного исполина составляет 120 метров, диаметр ротора — 126 метров, а гондола (верхняя часть установки, включающая турбину и генератор) весит более 200 тонн. В пятерку лидеров ветроэнергетики входят также США (16,8 ГВт), Испания (15,1 ГВт), Индия (7,9 ГВт) и Китай (6 ГВт).





Змей-мореход

В феврале 2008 года в свое первое плавание по маршруту Германия — Венесуэла отправилось грузовое судно Beluga SkySails. В этом не было бы ничего примечательного, если бы судно это не оказалось первым океанским «грузовиком», приводимым в движение настоящим воздушным змеем. Правда, кайт, как на технологическом языке называется змей, тащит корабль не в одиночку, а вместе с судовыми двигателями, но его применение позволяет экономить около 20% топлива. Проекты использования в помощь морякам ветра существовали и раньше, но идеи новых парусников разбивались о необходимость оборудовать их гигантскими мачтами. Парусу этого корабля мачты не требуются, а управление им полностью компьютеризировано. Даже точка крепления буксировочного троса к корпусу выбирается программой в зависимости от того, куда и с какой скоростью должен идти корабль и как дует ветер.

Проблемы чистого источника

Применение современных технологий, постройка новых мощных генераторов и государственная поддержка позволили значительно снизить себестоимость электричества, производимого на ветряках. Например, в США она составляет 5 центов за киловатт-час при средней скорости ветра 7 м/с и 3 цента при скорости ветра 9 м/с. Это меньше себестоимости электричества, производимого на ТЭС (в тех же США — 4,5—6 центов за киловатт-час). Однако перед ветроэнергетикой стоят еще и другие проблемы неэкономического характера. Главный ее недостаток — непостоянство. Ветер, как известно, то дует, то нет. И дует отнюдь не равномерно: то слабо, то сильно, то порывами. Получается, что сегодня генератор выдает одну мощность, завтра — другую, а послезавтра ветер затих и электричество вовсе пропало. Поэтому если ветряк обслуживает какой-то конкретный объект, к нему приходится добавлять целый комплекс аппаратуры. Во-первых — инвертор, который преобразует полученную энергию в ток промышленного качества (для России — 220 В, 50 Гц). Во-вторых — батарею аккумуляторов для выравнивания мощности. В-третьих — резервный дизель-генератор на случай длительного безветрия. Добавление всех этих агрегатов, которые значительную часть времени будут простаивать, увеличивает себестоимость производимой энергии в 2—3 раза. Поэтому лучший выход — подключение ветрогенераторов к единой энергетической системе. Тогда нехватка электричества от одного ветрогенератора будет компенсироваться избытком от другого, а в случае обширного штиля — усиленной работой прочих участников процесса энергопроизводства.

Два типа экспериментальных карусельных ветряков в Южном Уэльсе, Великобритания. Фото: SPL/EAST NEWS

Вторая проблема — относительно низкая интенсивность. Средний промышленный ветрогенератор выдает порядка 1 МВт электрической мощности. На площади в 1 км2 можно разместить десяток-другой таких установок, только тогда они не будут мешать работе друг друга. С учетом непостоянства ветров с 1 км2 можно снимать в среднем 5—10 МВт электроэнергии, а для получения 1 ГВт понадобится площадь 100—200 км2. Для сравнения: Курская АЭС мощностью 4 ГВт вместе со всеми вспомогательными сооружениями и даже с рабочим поселком занимает площадь 30 км2. Стандартный способ решения этой проблемы — отведение под ВЭС пустующих земель либо использование пустующей территории ВЭС для выращивания сельскохозяйственных культур. Проще говоря, сдача их в аренду фермерам по сниженным ценам. Кроме того, многие государства стали создавать «морские ветропарки», застраивая ветряками прибрежные шельфовые зоны.

Находиться рядом с действующим ветряком не слишком комфортно, поскольку он изрядно шумит. В этом и состоит третья проблема. Непосредственно рядом с гондолой мощного ветрогенератора интенсивность шума может достигать 100 дБ, как на станции метро, на которую прибывают сразу два поезда. У подножия башни шум составляет около 60 дБ, как на улице большого города. Чтобы снизить его до приемлемого уровня в 35—45 дБ, характерного для тихой улицы или городского двора, практически во всех странах, где применяются промышленные ветряки, законом установлено, что расстояние от них до ближайшего жилья должно быть не менее 300 метров.