Страница 11 из 32
В последующие десятилетия вооруженные новой концепцией исследователи обнаружили немало подтверждений механизмов СТЭ — видов, «захваченных» в процессе разделения и становления. Часть постулированных ею процессов удалось даже воспроизвести в эксперименте, причем на таких разных группах, как насекомые и дрожжи. Так, если разделить исходно однородную популяцию на две части и вести в них отбор в противоположных направлениях, скрещивание их представителей со временем становится затрудненным или даже невозможным. Правда, никто не наблюдал становления нового семейства или отряда, не говоря уж о классах и типах, поскольку эти процессы должны идти в геологическом масштабе времени. Теоретики СТЭ не видели здесь никаких принципиальных трудностей: по их мнению, эволюционное становление крупных групп ничем принципиально не отличается от видообразования. Если потомкам разделившегося вида повезет, то они, эволюционируя независимо друг от друга, постепенно накопят различия, соответствующие уровню разных родов, а потом и более высоких уровней биологической классификации.
Конечно, на самом деле СТЭ гораздо глубже и сложнее: важную роль в ней играют случайные изменения генных частот («дрейф генов»), резкие колебания численности популяций и другие факторы вплоть до изменений в поведении групп животных. Но именно генетические механизмы оказались в центре внимания эволюционной теории ХХ века. При этом традиционные морфологические исследования «кто кому родня» не прекратились, но стали уделом специалистов по конкретным группам. Впрочем, и в эту область все больше проникает генетический подход. В самом деле, зачем спорить, происходит ли группа А от группы В, с которой ее роднит тип эмбрионального развития, или от группы С, имеющей тот же уникальный ротовой аппарат, надо просто взять белки или фрагменты генома представителей каждой группы, расшифровать их, а дальше компьютерная программа, сопоставляя «разночтения», сама построит наиболее вероятное филогенетическое дерево.
Противники дарвинизма говорят, что созданные селекцией сорта растений и породы животных не выходят за пределы исходного вида. Но в природе не найдена, например, дикая кукуруза, известны только близкие виды злаков. Один (а может, и не один) из них послужил древним селекционерам сырьем для культурной, которую ботаники признают самостоятельным видом. Фото: AGE/EAST NEWS
Расхожие аргументы против эволюции
Теория эволюции не доказана и остается лишь гипотезой. Как показал еще в 1930-е годы классик философии науки Карл Поппер, никакая научная теория не может быть доказана окончательно. Любая научная теория — это обобщение известных фактов. И всегда остается возможность, что завтра будет открыт факт, не укладывающийся в данную теорию. Верно и обратное: принципиально неопровержимая теория не может считаться научной. Именно поэтому сообщество ученых отказывается признавать так называемую теорию разумного замысла (Intelligent Design Theory). Невозможно представить факт, который мог бы опровергнуть предположение, что живые существа целенаправленно созданы некой разумной силой. Следовательно, оно лежит вне науки. Живые существа слишком сложно устроены, чтобы возникнуть в результате случайности. Сторонники этого тезиса ссылаются на расчеты времени, необходимого для случайного возникновения самого простенького белка. Оно на много порядков превышает возраст Вселенной. Но странно: никто из них не замечает, что во всех подобных расчетах отсутствует... естественный отбор. Сторонники подобных взглядов ломятся в открытую дверь, доказывая невозможность самозарождения живого организма из случайно собравшихся вместе молекул. Кроме того, теория Дарвина, строго говоря, не содержит утверждений о том, как появилась жизнь, и не опирается на какие-либо гипотезы в этой области. Никто никогда не видел, чтобы один вид превращался в другой. Случаи распадения единой популяции на нескрещивающиеся формы под действием разнонаправленного отбора зафиксированы в экспериментах и полевых наблюдениях над дрозофилами, рачками-бокоплавами, дрожжами, лососями и т. д. Однако вид — это не просто множество особей, способных к взаимному скрещиванию, но прежде всего уникальная экологическая ниша. Поэтому о появлении нового вида можно говорить лишь тогда, когда созданная форма займет определенное место в какой-либо экосистеме. Наибольшим успехом в «видотворчестве» можно считать опыты советского энтомолога Георгия Шапошникова на тлях, каждый вид которых способен питаться только одним видом растений. Тли, пересаженные со «своего» растения на близкородственное, пройдя за несколько десятков поколений через тяжелый кризис, утрачивали способность скрещиваться с исходным видом и приобретали сходство с тлями нового хозяина. В палеонтологической летописи нет переходных форм между известными группами. Редкость переходных форм смущала еще Дарвина, полагавшего, что если они не будут найдены, это станет опровержением его теории. Однако согласно современным взглядам крупные эволюционные изменения весьма скоротечны по сравнению со временем стабильного существования вида (и, вероятно, происходят на ограниченных территориях). Поэтому среди ископаемых останков переходные формы должны попадаться неизмеримо реже стабильных, что и наблюдается в действительности. Тем не менее известно немало ископаемых существ, сочетавших в себе признаки рыб и амфибий, рептилий и млекопитающих, голосеменных и цветковых растений и т. д. Но, как замечает известный популяризатор эволюционной теории Ричард Докинз, когда ученые находят ископаемое, попадающее в середину очередного «разрыва», креационисты только радуются: теперь в этой линии будут два «разрыва» вместо одного. Восстановить же облик каждого поколения предков той или иной группы заведомо нереально.
Возраст третий: история сообществ
Пожалуй, только одна область биологии оставалась практически недоступной для такого подхода — палеонтология. У ископаемых организмов (за исключением мамонтов и других существ ледникового периода, чью плоть сохранила вечная мерзлота) нет ни белков, ни нуклеиновых кислот. Их ткани давно заместились минеральными соединениями, хранящими форму древних существ, но не их генетические тексты. Палеонтологам волей-неволей приходится работать «по старинке», опираясь исключительно на морфологические признаки и интуитивно определяя их эволюционный «вес». Зато они, в отличие от специалистов по современной флоре и фауне, могли рассматривать не только «мгновенные снимки» эволюции, но и целые «фильмы»: в некоторых случаях полнота и сохранность останков столь высоки, что не оставляют сомнений в том, кто, когда и от кого произошел.
Одной из таких счастливых находок стали осадочные отложения соленого озера Туркана (Рудольф) в Кении, где палеонтологи обнаружили огромное количество раковин десятков видов пресноводных моллюсков, населявших этот водоем последние 5 миллионов лет. За это время в озере возникло несколько новых видов, причем процесс их формирования занимал сравнительно небольшое время (5000—50 000 лет). А между этими редкими событиями виды оставались стабильными по миллиону и более лет. Реконструкция истории турканских моллюсков вызвала ожесточенные споры, однако свидетельств крайней неравномерности темпов эволюции находилось все больше. В 1972 году американские палеонтологи Найлс Элдридж и Стивен Гулд, обобщив эти факты, выдвинули теорию «прерывистого равновесия», постулирующую, что именно таков обычный ход эволюции: короткие (но все же исчисляемые сотнями и тысячами поколений) периоды быстрых изменений сменяются долгими эпохами стабильности. Оставалось только объяснить, почему это так.
В 1969 году советский палеоботаник Валентин Красилов пришел к выводу о том, что решающую роль в эволюции играют экосистемные взаимодействия. Изучая мезозойскую флору Сибири, он обратил внимание на то, что наиболее массовые и характерные виды растений этого времени существуют, почти не меняясь, около 100 миллионов лет. А затем эти виды в геологически короткие сроки замещаются совсем другими растениями. Причем новые виды не просто приходят на место вымерших — они стремительно меняются, порождают все новые и новые формы и в конце концов складываются в новую, кайнозойскую флору.