Добавить в цитаты Настройки чтения

Страница 22 из 23



Исходя из сказанного, существует два подхода к моделированию мозга. Первый из них — традиционный подход «сверху вниз» — состоит в том, чтобы рассматривать роботов как цифровые компьютеры и с самого начала пытаться запрограммировать все правила, позволяющие нам быть разумными. А любой цифровой компьютер может быть сведен к так называемой «машине Тьюринга» — гипотетическому устройству, предложенному великим британским математиком Аланом Тьюрингом. Машина Тьюринга состоит из трех основных элементов: входа, Центрального процессора, который «переваривает» поступающую информацию, и выхода. Все без исключения цифровые компьютеры построены на базе этой простой модели. Цель такого подхода — изготовить CD-ROM, на котором были бы записаны в формализованном виде все правила разумности. Стоит вставить такой диск в дисковод — и компьютер внезапно оживает и становится разумным. По сути дела, такой мифический CD-ROM содержал бы все программное обеспечение, необходимое для создания думающих машин.

Однако в нашем мозгу нет ни программирования, ни программного обеспечения. Мозг больше похож на «нейронную сеть» — сложную систему нейронов, которые постоянно устанавливают между собой новые связи.

Нейронные сети подчиняются правилу Хебба: всякий раз, когда принимается верное решение, соответствующие нейронные связи укрепляются — всякий раз, когда нейроны успешно выполняют задание, определенные электрические связи между ними усиливаются. (Правило Хебба можно выразить ответом на известный вопрос: как музыканту попасть в Карнеги-холл? Ответ на него тоже известен: практика, практика и еще раз практика. В случае нейронной сети практика — путь к совершенству. Правило Хебба объясняет также, почему так трудно избавляться от дурных привычек — ведь нейронные связи, задействованные в них, весьма утоптаны.)

Нейронные сети построены на базе другого подхода — «снизу вверх». Вместо того чтобы получить все правила разумности готовыми, на блюдечке с голубой каемочкой, нейронные сети осваивают их самостоятельно; так младенец постигает окружающий мир, натыкаясь на все подряд и обучаясь на собственном опыте. Нейронные сети, вместо того чтобы пользоваться готовыми программами, учатся старым проверенным методом проб и ошибок.

Нейронные сети построены совершенно иначе, чем цифровые компьютеры. Если убрать из центрального процессора цифрового компьютера один-единственный транзистор, компьютер перестанет работать. Однако если удалить из человеческого мозга приличный кусок, мозг все же будет функционировать; функции утраченных частей возьмут на себя оставшиеся. Кроме того, можно точно сказать, где в цифровом компьютере происходит «мыслительный процесс»: в центральном процессоре. Однако результаты сканирования человеческого мозга ясно показывают, что процесс мышления распределен по значительной части объема мозга. Различные зоны включаются в строгой последовательности, как будто мысли надо отбивать, подобно шарикам в пинг-понге.

Цифровой компьютер способен производить вычисления со скоростью, близкой к скорости света. Человеческий мозг по сравнению с ним работает невероятно медленно. Нервные импульсы движутся со скоростью всего лишь около 100 м/с. Но мозг более чем компенсирует этот недостаток, поскольку огромное число процессов в нем происходят параллельно. Это означает, что в нем одновременно работает 100 млрд нейронов, каждый из которых производит крохотную часть «вычисления», и каждый нейрон при этом связан с 10 000 других нейронов. И этот сверхмедленный параллельный процессор легко оставит позади сверхбыстрого одиночку. (Здесь можно вспомнить старую загадку: если одна кошка может съесть одну мышь за одну минуту, то за какое время миллион кошек сможет съесть миллион мышей? Ответ: за одну минуту.)

Ну и помимо всего прочего, мозг — не цифровое устройство. Транзисторы — это ворота, которые могут быть либо открыты, либо закрыты, что соответствует единице или нулю. Нейроны тоже представляют собой цифровые устройства (нейрон либо срабатывает, либо нет), но они могут быть и аналоговыми, т. е. передавать как дискретные, так и непрерывные сигналы.

Две проблемы с роботами

Учитывая очевидные ограничения компьютеров по сравнению с человеческим мозгом, несложно понять, почему нам до сих пор не удается научить компьютеры решать две ключевые задачи, которые человеческий мозг выполняет автоматически, без всякого труда. Эти задачи — распознавание образов и следование здравому смыслу — уже более полувека не даются ученым. Именно поэтому в основном у нас до сих пор нет роботов-горничных, роботов-дворецких и роботов-секретарей.

Первая из названных задач — задача распознавания образов. Роботы видят намного лучше человека, но не понимают, что видят. Входя в комнату, робот раскладывает ее изображение на множество цветных точек, а затем, обрабатывая точки, получает набор линий, окружностей, квадратов и прямоугольников. После этого робот пытается соотнести полученную мешанину деталей по очереди с каждым из объектов, хранящихся в его памяти, — чрезвычайно нудная задача даже для компьютера. После многих часов вычислений ему, может быть, удастся соотнести линии на картинке со стульями, столами и людьми, находящимися в комнате. В отличие от роботов, мы, входя в комнату, за долю секунды схватываем взглядом стулья, письменные столы и людей. В самом деле, человеческий мозг — это по сути машина для распознавания образов.

Кроме того, у роботов нет здравого смысла. Роботы могут слышать намного лучше, чем люди, но они не понимают, что слышат. Рассмотрим, к примеру, следующие утверждения.



•Дети любят сладости, но не любят наказания.

•За веревку можно тянуть, но нельзя толкать.

•Палкой можно толкать, но нельзя тянуть.

•Животные не умеют говорить и не понимают по-английски.

•От вращения у человека может закружиться голова.

Для нас каждое из этих утверждений очевидно и проистекает из обычного здравого смысла. У роботов все не так. Не существует ни одного положения логики, ни одной строки программного кода, в которых бы утверждалось, что бечевкой ничего нельзя толкнуть. Сами мы убедились в истинности этих и многих других «очевидных» утверждений на опыте, их никто не вкладывал в готовом виде нам в память.

При подходе «сверху вниз» основная проблема заключается в том, что для программирования человеческого здравого смысла, необходимого для имитации нашего мышления, потребовалось бы слишком много строк кода. К примеру, на описание принципов здравого смысла в объеме, доступном шестилетнему ребенку, ушли бы сотни миллионов строк. Ганс Моравек (Hans Moravec), бывший начальник лаборатории искусственного интеллекта в Университете Карнеги-Меллон, жалуется: «До сего дня программы ИИ не способны продемонстрировать ни крупицы здравого смысла. К примеру, медицинская диагностическая программа способна прописать антибиотик, если предложить ей для исследования сломанный велосипед. Дело в том, что у нее нет ни модели человека, ни модели болезни, ни модели велосипеда».

Тем не менее некоторые ученые упрямо верят, что единственное препятствие к овладению здравым смыслом — недостаток вычислительных мощностей. Они считают, что масштабный национальный проект наподобие Манхэттенского (в рамках которого была создана атомная бомба) наверняка смог бы преодолеть все препятствия и решить для роботов проблему здравого смысла. В 1984 г. была запущен проект под названием CYC, призванный создать «энциклопедию мысли» для роботов. Однако за прошедшие с тех пор несколько десятилетий все усилия участников проекта не увенчались сколько-нибудь серьезным успехом.

Цель проекта CYC была проста: освоить «100 млн вещей — примерно столько, сколько знает о мире средний человек, — к 2007 г.». Этот срок, как и несколько предыдущих, пришел и прошел, а успех так и не был достигнут. В ходе работы были Достигнуты многие формальные рубежи из тех, что намечали для себя инженеры CYC, но ученым и по сей день не удалось ни па шаг приблизиться к овладению основами разума.