Страница 49 из 63
Таким образом, на дне печи получается смесь железа, карбида железа и шлака. В самых первых печах эта смесь проплавлялась неполностью, ее извлекали в виде тестообразного куска, слитка, содержащего древесный уголь и другие включения. Включения эти составляли самостоятельную проблему, а, кроме того, из карбида железа негоже было делать оружие и инструмент - карбид очень хрупок. Причина хрупкости карбида железа в том, что в отличие от кристаллов почти чистого железа, построенных на металлической связи, которая благоприятствует движению дислокаций, он частично построен на ковалентных связях, которые не обеспечивают заметной подвижности дислокаций вплоть до температуры около 250° C. Поэтому в таком виде металл куется лишь в горячем состоянии, при комнатной температуре он хрупок.
Такое железо и попадало в руки первых кузнецов. Нагревая это железо до 800-900° C, они ковали его с громадным трудом. Вначале труд был ручным, затем начали использовать силу воды (“кузнечные пруды”!). Ковка имела два следствия. Во-первых, она механически выдавливала большинство включений и часть шлака и снижала содержание углерода в железе. Второе следствие заключалось в следующем. Железо, нагретое до умеренных температур на воздухе, образует окисную пленку, обычно FeO. Нагретое и расплющенное ударами молота железо кузнец сгибал вдвое и снова начинал по нему бить. Пленка окисла попадала между слоями горячего слитка, контакт между слитком и пленкой под ударами молота становился практически идеальным, в результате чего начиналась реакция Fe3C+FeO → 4Fe + СО.
Когда требовалось железо высшего качества, поочередное расплющивание и складывание вдвое повторялось многократно, порой тысячи раз. Вот почему на мечах заметен изящный волнистый рисунок -это тонкие слои металла и следы ударов молота. Если вся работа выполнялась надлежащим образом, то удалялся почти весь углерод. Такое кованое железо (его называют сварочным или ковочным) с небольшими примесями кремния, в целом полезными, содержало также прожилки шлака, тоже до некоторой степени полезные. Дело в том, что очищенное железо было, вообще говоря, слишком мягким, и стекловидные волокна шлака несколько ограничивали его текучесть. Кроме того, сварочное железо обычно прекрасно сопротивлялось коррозии. Частично это объясняется чистотой самого железа, но существует и другое объяснение. Многие полагают, что начальная пленка ржавчины удерживалась на поверхности с помощью шлаковых включений. Она не отлетала со временем и служила защитой от последующей коррозии.
Сварочное железо прямо с наковальни было слишком мягким, чтобы делать из него оружие и инструмент, поэтому его нужно было сделать потверже, увеличив содержание углерода; для этого достаточно было насытить углеродом поверхность. Почти этот же процесс находит широкое применение и до сих пор. Он называется “цементацией”. Мечи (или другое оружие) погружались в среду, содержащую в основном углерод, а также некоторые секретные приправы сомнительной эффективности. Все это нагревалось в течение такого времени, которое необходимо, чтобы углерод проник на глубину 0,5-1,0 мм.
Поверхностное науглероживание резко повышает твердость, но еще лучший результат дает последующая закалка быстрым охлаждением в жидкости. Механизм закалки очень сложен. Коротко дело обстоит так. Горячая сталь состоит из аустенита, то есть из раствора углерода в такой модификации железа, которая нестабильна при комнатной температуре. Процесс распада аустенита с выделением углерода определяется особенностями охлаждения. При сравнительно медленном охлаждении получается перлит. Под микроскопом структура такой стали выглядит переливчатой, отсюда и название - “перлит” значит жемчужный. Переливы дают чередующиеся полоски или слои чистого железа (феррит) и карбида железа (цементит). Сталь с такой регулярной структурой получается вязкой и довольно прочной, но не особенно твердой. Если аустеинт охлаждать очень быстро, то в основном получится мартенсит -другой вариант железоуглеродистого кристалла, в котором положение атомов углерода среди атомов железа таково, что исключает возможность движения дислокаций, и кристалл получается крайне твердым. Обычно эустенит превращается в мартенсит с очень высокой скоростью (что-нибудь около 5 км/час), для получения большого количества мартенсита охлаждать изделие нужно с наибольшей возможной скоростью.
Закалку можно производить в воде, обычно так и делается; но исторически, вероятно, всегда отдавалось предпочтение разным биологическим жидкостям, например моче[47]. Оказывается, действительно такая практика имеет два преимущества. Первое состоит в более быстром охлаждении металла. Когда горячий металл попадает в воду, вокруг него образуется оболочка из пара, которая не позволяет жидкой воде касаться металла, что затрудняет передачу тепла. Если при закалке применяется моча, на поверхности металла при испарении воды образуется слой кристалликов. Это улучшает теплопередачу, поскольку паровая прослойка уменьшается. Более того, содержащиеся здесь соединения азота - мочевина и аммиак - разлагаются и азот проникает в железо, то есть происходит азотирование поверхности, при этом образуются твердые игловидные кристаллы нитрида железа Fe2N, а отдельные атомы азота внедряются в кристаллическую решетку железа, становясь так называемыми примесями внедрения, которые закрепляют дислокации. Правда, степень азотирования в процессе такой закалки очень невелика. В современной практике азотирование проводят путем выдержки изделия в течение двух-трех дней в мочевине или аммиаке. Столь продолжительная выдержка делает эту обработку довольно дорогой, поэтому ее применяют только в случаях крайней необходимости[48].
Интересно заметить, что весь металлургический процесс состоит из ряда стадий, каждая из которых заходит дальше, чем нужно, и на каждой последующей стадии полученные результаты корректируются. Так, сначала получают чугун, который содержит слишком много углерода, а потому слишком тверд. Потом удаляют почти весь углерод и обнаруживают, что железо стало слишком мягким, и поэтому снова в него следует добавить углерод. Если мы хотим получить твердый инструмент или оружие, то полученная сталь должна быть закалена быстрым охлаждением в жидкости. Закаленные стали (и цементованное железо) часто слишком хрупки, и требуется еще одна, на этот раз последняя, обработка - отпуск.
В процессе отпуска закаленный металл нагревается до температур 220-450° C и после этого охлаждается на воздухе. Отпуск делает сталь несколько мягче, в процессе отпуска часть мартенсита переходит в более мягкую и пластичную структуру. С повышением температуры эффективность отпуска увеличивается. Между прочим, существует традиционный способ определения температуры отпуска по цвету окисной пленки на поверхности металла - по цветам побежалости. С ростом температуры цвет окисной пленки изменяется от желтого до коричневого, затем становится фиолетовым и, наконец, синим. Ясно, что простые углеродистые стали нельзя использовать при повышенных температурах, так как их свойства при этом резко ухудшаются.
(обратно)