Страница 18 из 89
Квантовая теория не смогла в корне изменить ситуацию вероятностной интерпретации. Причина — неполнота формализации логического аспекта теории. В численности, истинной материи физических взаимодействий, нет «неизвестных деталей» для нее самой. В исчислении нет разрывов. Традиционное физическое представление таково: В целом, в классической механике основными понятиями являются материальные точки и тела как системы материальных точек. Материальные точки движутся по траекториям — идеальным объектам математического анализа. Вся многообразная жизнь материальных точек, материальных тел, законы их взаимодействия и математический способ описания этой жизни соответствуют аристотелевой логике. Для формулировки основных положений квантовой теории нужна более изощренная математика, а при строгой формулировке математика уровня функционального анализа неизбежна... Но после того как основные положения квантовой теории записаны в адекватной математической форме, вообще можно обойтись без какой-либо физической интерпретации этой математической формы, включая и сами исходные положения. Поэтому можно вообще не понимать (один из выдающихся физиков XX в. и знаток квантовой теории Р. Фейнман неоднократно утверждал, что квантовую механику никто не понимает) квантовую теорию, т. е. игнорировать любые ее возможные интерпретации, и не только успешно ее применять, но и получать в этой области новое теоретическое знание. За то, что ситуация именно такова, говорит и следующее. Интерпретация классической механики единственна и наглядна: всякая механическая система есть набор материальных точек, движущихся каждая по своей траектории. Ни наличие связей в системе, ни число точек в ней этой интерпретации не меняют. Например, введение в классике статистического описания предполагает, что к картине системы частиц всегда можно вернуться. Иными словами, эта интерпретация является внутренним свойством классической механики, следует из ее основных постулатов. Иное дело в квантовой механике. Известно большое число существенно различных ее интерпретаций. Эти интерпретации разработаны в различной степени, но нет доказательств, что справедлива только одна из них, а другие неверны. Это означает, что физическая интерпретация квантовой механики в самой квантовой механике не заложена и не является ее внутренним свойством.
Таким образом, механика времени возникает как истинная интерпретация квантовой механики, прологом которой оказывается теория относительности, понятая как предпосылка принципа формализации. Так развязывается знаменитый спор Эйнштейна и Бора. Физическая интерпретация квантовой механики есть ее интерпретация как дескрипции (системы описания) численности, раскрытия истинных физических объектов и взаимодействий как объектов и отношений числового ряда. Квант, таким образом, есть неполное понятие простого числа. Квант на самом деле есть простое число. Так преодолевается корпускулярно-волновой дуализм, объясняющий все парадоксы поведения частиц в квантовой теории. Простое число есть универсальная физическая константа. Всякий «материальный объект, обладающий как корпускулярными, так и волновыми свойствами, когда импульс частицы p и длина соответствующей волны связаны соотношением де Бройля, есть категория простого числа. «Электромагнитное излучение обладает как волновыми, так и корпускулярными свойствами (корпускулярно-волновой дуализм). Этот дуализм неразрывно связан с существованием постоянной Планка — кванта действия». Квант действия — есть описание, дескрипция закона простых чисел как системы истинного квантования.
15. Результат интерпретации квантовой механики в языке теории относительности описывает физическую реальность закона простых чисел. Мировая линия простых чисел образует бесконечную структуру Вселенной. Математическое понятие простого числа оказалось недостаточным для построения теории делимости — это привело к созданию понятия идеала. Дирихле в 1837 г. установил, что в арифметической прогрессии а + bx при х = 1, 2,... с целыми взаимно простыми а и b содержится бесконечно много простых чисел. Отсутствие всеобщей теории делимости и привело к возникновению квантовой механики как неполной формализации делимости. Выяснение распределения простых чисел необходимо проводить не только в натуральном ряде чисел, но во всей численности. Этому посвящена гипотеза Римана о неслучайности распределения простых чисел во всеобщей системе числового ряда. Мысленные эксперименты Эйнштейна, выявляющие парадоксы времени (одновременности), являются физической реальностью, физическим воспроизведением проблемы «близнецов» как проблемы аналитической теории чисел (проблема «близнецов» состоит в том, чтобы узнать, конечно или бесконечно число простых чисел, разнящихся на 2 (таких, например как 11 и 13)).
16. Квантование, таким образом, есть задача о собственных значениях простых чисел. Энергия, собственно говоря, есть цифровая форма простого числа, числовая «простота» простого числа. Истинное квантовое измерение есть исчисление простых чисел. В этом — основа решения задачи о квантовом компьютере. Планк предположил, что при излучении или поглощении энергия испускается порциями — квантами: «Но даже если бы эта формула излучения (т.е. формула для спектральной плотности излучения абсолютно черного тела) оказалась абсолютно точной, то она имела бы очень ограниченное значение — только как счастливо отгаданная интерполяционная формула. Поэтому я со дня ее нахождения был занят задачей установления ее истинного физического смысла, и этот вопрос привел меня к рассмотрению связи между энтропией и вероятностью, т.е. к больцмановскому образу мыслей. После нескольких недель напряженнейшей в моей жизни работы темнота рассеялась, и наметились новые, неподозреваемые ранее дали»22.
Истинный физический смысл данного предположения заключается в том, что физическая природа (материя) является фундаментальной интерпретацией численности. Последовательная рефлексия этого смысла ведет нас от имманентного понятия «кванта» к трансцендентальному понятию «простого числа» как фундаментальной категории всеобщей (физической) теории числа (трансцендентных=истинных чисел).
Планк писал: «Коротко и сжато я могу все дело назвать актом отчаяния. ... я тогда уже шесть лет бился над проблемой равновесия между излучением и материей, не достигнув никакого успеха: я знал, что эта проблема имеет фундаментальное значение для физики, и я знал формулу, которая воспроизводит распределение энергии в нормальном спектре; теоретическое объяснение должно было быть поэтому найдено любой ценой, и никакая цена не была бы слишком высока. Классическая физика для этого недостаточна, это было мне ясно. Потому, что согласно ей, энергия должна с течением времени целиком перейти из материи в излучение. Так как она этого не делает, то должна существовать какая-то новая универсальная постоянная, которая может обеспечить, чтобы энергия не распадалась. ... Я пришел к этой точке зрения благодaря тому, что твердо держался обоих законов теории теплоты. Эти оба закона казались мне тем единственным, что при всех обстоятельствах должно оставаться незыблемым. В остальном я был готов к любой жертве в моих прежних физических убеждениях. ...Больцман объяснил существование термодинамического равновесия через статистическое равновесие; если эти его соображения применить к равновесию между материей и излучением, то, оказывается, что преобразование в излучение может быть предотвращено, что энергия с самого начала вынуждена пребывать в определенных количествах. Это было чисто формальное предположение, и я первоначально не думал много об этом, памятуя только лишь о том, что при всех обстоятельствах любой ценой должен добиться положительного результата»23.
«Равновесие между излучением и материей» есть рефлексивное равновесие. Физическая сущность «равновесия между излучением и материей» — физика процесса представления числа цифрой, физика формализации числа. Неслучайно Планк весьма сдержано относился к квантовой механике, так до конца своей жизни не расставшись с «классическими» (истинностными) взглядами. Механика времени ведет к радикальному пересмотру оснований термодинамики как неистинного (неполного) = вероятностного физического описания. Механика времени не нуждается в гипотезе термодинамики. Вопрос о «равновесии материи и излучения», поставленный Планком, есть, таким образом, вопрос о представлении чисел в виде суммы двух квадратов, который исчерпывается следующим утверждением: натуральное число представимо в виде суммы двух квадратов целых чисел тогда и только тогда, когда все простые сомножители вида 4k+3 входят в разложение этого числа на простые сомножители с четными показателями. Теорема Лагранжа гласит, что всякое натуральное число есть сумма четырех квадратов целых чисел. После теоремы Ферма-Эйлера математики описали все числа, представимые в виде суммы двух квадратов. Числа, представимые в виде суммы трех квадратов описал Гаусс в 1801 г.