Страница 11 из 39
Рис. 1.28.
а — общая картина замкнутой вселенной, развитие которой начинается с однородного, низкоэнтропийного Большого Взрыва (с тензором Вейля = 0) и заканчивается высокоэнтропийным Большим Сжатием, соответствующим слиянию многочисленных черных дыр (при этом тензор Вейля стремится к бесконечности); б — пространственно-временная диаграмма, описывающая коллапс отдельной черной дыры; в — эволюция открытой вселенной, также начинающаяся с однородного, низкоэнтропийного Большого Взрыва (с тензором Вейля = 0).
В этом случае общая картина эволюции вселенной будет напоминать рис. 1.28, а и в. Гипотеза кривизны Вейля предполагает асимметрию по отношению ко времени, поэтому она относится лишь к сингулярностям в прошлом, а не в будущем. Если бы тензор Вейля был достаточно «гибким» (т. е. его можно было применять в замкнутой модели и к прошлому, и к будущему), то нам бы удалось покончить с нынешней «ужасающей» картиной мира, в которой вселенная была и остается крайне беспорядочной (рис. 1.29). Ведь Вселенная, в которой мы живем, выглядит совсем по-иному!
Рис. 1.29.
Сняв указанное ограничение (условие, что тензор Вейля = 0), мы вновь получаем картину с высокоэнтропийным Большим Взрывом (тензор Вейля стремится к бесконечности). Такую вселенную пронизывали бы белые дыры, и в ней не выполнялся бы второй закон термодинамики (а это никак не согласуется с тем, что мы видим).
Какова вероятность (строго говоря, случайность или шанс), что начальная сингулярность вселенной была еще слабее, чем нам представляется сейчас? Эту величину можно оценить по формуле Якоба Бекенштейна и Стивена Хокинга для энтропии черных дыр. В нашем случае она приводит к дроби, где в числителе единица, а в знаменателе — немыслимо чудовищное число 1010 в степени 123. Если указанная формула применима к столь грандиозному объекту, как вселенная, то вы действительно получаете это фантастическое число (поскольку вероятность зависит от размеров). В той вселенной, которую я предлагаю, эту величину можно смело приравнять нулю.
Сказанное подводит нас к вопросу о точности, с которой должны быть определены условия «организации» Большого Взрыва. Ситуация выглядит поразительной, и я попытался выразить ее карикатурой (рис. 1.30), на которой Творец выискивает сверхкрошечную точку в фазовом пространстве, соответствующую начальным условиям, при которых будущая вселенная приобретет привычный нам вид. Творцу необходимо определить положение точки в фазовом пространстве с указанной фантастической точностью (1010^123). Число, о котором идет речь, столь велико, что мне не удалось бы выписать его в ряд, даже используя в качестве нулей все элементарные частицы вселенной.
Рис. 1.30.
Для создания вселенной, похожей на нашу, Творцу пришлось бы найти немыслимо крошечную точку в фазовом пространстве и воткнуть в нее столь же крошечную иголку (ни точку, ни острие иголки на рисунке не удалось изобразить из-за малости размеров!). Выбранная точка должна была содержать лишь 1010^123 часть общего объема фазового пространства!
Я начал изложение с проблемы удивительной точности и согласованности физики и математики. Затем я попытался очень кратко рассказать о втором начале термодинамики, которое многие считают «приблизительным» и не оправдавшим возлагавшихся на него надежд (наверное, потому, что оно связано с понятиями случайности и вероятности), но которое на самом деле отражает удивительно точные закономерности. Говоря о вселенной, мы обязаны оценить точность условий создания ее исходного состояния. Эта точность позднее должна быть отражена и в той будущей, еще не созданной теории, которая позволит объединить квантовую теорию и общую теорию относительности. В следующей главе я продолжу рассказ о процессах, объектах и задачах будущей теории.
Глава 2. Тайны квантовой механики
В гл. 1 я попытался показать, что структура окружающего нас физического мира очень сильно зависит от законов математики (как это было показано на рис. 1.3), причем точность, с которой математика описывает фундаментальные физические аспекты, иногда представляется просто поразительной и заставляет вспомнить название знаменитой лекции Юджина Вигнера «Непостижимая эффективность математики в естественных науках». Список блестящих математических описаний природных явлений действительно выглядит весьма впечатляюще. Сюда входят, например:
Геометрия Евклида, которая на расстояниях порядка метров имеет точность порядка диаметра атома водорода. Как я уже отмечал в гл. 1, общая теория относительности не позволяет ей быть абсолютно точной, однако для практических целей точность евклидовой геометрии всегда исключительно высока.
Механика Ньютона, точность которой доходит до10-7 (для дальнейшего повышения точности необходимо учитывать релятивистские эффекты).
Электродинамика Максвелла, которая в сочетании с квантовой механикой достаточно хорошо описывает взаимодействия при изменении масштаба в 1035 раз, т. е. от размеров элементарных частиц до межгалактических расстояний.
Эйнштейновская теория относительности, о которой я уже рассказывал в гл. 1. В той области, где она применима (и где она обобщает и включает в себя квантовую механику), точность этой теории доходит до 10-14, что на семь порядков превышает точность механики Ньютона.
Квантовая механика, которая является темой этой главы и также представляет собой весьма точную теорию. Например, в квантовой электродинамике, представляющей собой сочетание квантовой механики, электродинамики Максвелла и специальной теории относительности, точность некоторых расчетов доходит до 10-11. В частности, можно особо отметить, что используемая в квантовой электродинамике так называемая «система единиц Дирака» включает в себя вычисленное значение магнитного момента электрона 1,001159652(46), которое прекрасно согласуется с экспериментально найденным значением 1,0011596521(93).
Особенно важно то, что во всех указанных теориях применение математических методов не только обеспечивает исключительную эффективность и точность описания физической картины, но и представляет интерес для развития самой математики, поскольку некоторые наиболее плодотворные идеи ее развития возникли именно на основе теоретических построений физики. В качестве примера можно указать обширные разделы математики, возникновение и развитие которых было обусловлено физическими исследованиями:
• теория действительных чисел;
• геометрия Евклида;
• математический анализ и теория дифференциальных уравнений;
• геометрия симплексов;
• дифференциальные формы и уравнения в частных производных;
• геометрии Римана и Минковского;
• теория комплексных чисел;
• теория гильбертова пространства;
• теория функциональных интегралов... и т. д.
Одним из наиболее ярких примеров такого рода является, безусловно, дифференциальное и интегральное исчисление, которое Ньютон и ряд других выдающихся математиков разработали в качестве математического основания обширного раздела физики, ныне известного под названием ньютоновской механики. Дальнейшее использование разработанных ими методов для решения различных чисто математических задач оказалось исключительно благотворным для развития самой математики.
В гл. 1 я уже говорил о масштабах физических объектов, измеряемых в пределах от фундаментальных единиц (длина Планка и время Планка, которые столь малы, что для описания даже самой маленькой элементарной частицы нам необходимо увеличивать их в 1020 раз), через размеры и время жизни человека (интересно, что мы, люди, являемся наиболее устойчивыми структурами физического мира), и наконец до возраста и радиуса Вселенной. При этом я особо подчеркивал важность того, что мы используем два совершенно разных метода для описания объектов физического мира, которые лежат на разных концах пространственно-временной шкалы. Как показано на рис. 2.1 (он просто повторяет рис. 1.5 первой лекции), мы используем квантовую механику для описания малых, квантовых уровней активности и классическую механику на уровне крупных объектов. Я обозначу эти уровни через U (унитарность, квантовый уровень) и С (классический уровень) и еще раз хочу подчеркнуть, что мы имеем дело, по-видимому, с совершенно разными законами в зависимости от масштаба изучаемых объектов.