Страница 8 из 32
Важным шагом к открытию квантовой теории стало выдвинутое в 1900 г. Максом Планком предположение, что свет всегда существует в форме небольших пакетов, которые он назвал квантами. Но хотя квантовая гипотеза Планка полностью объяснила наблюдаемый характер излучения горячих тел, полный масштаб ее следствий не осознавался до середины 1920-х гг., когда немецкий физик Вер-нер Гейзенберг сформулировал свой знаменитый
принцип неопределенности. Он заметил, что согласно гипотезе Планка чем точнее мы пытаемся измерить положение частицы, тем менее точно можем измерить ее скорость, и наоборот.
Более строго, он показал, что неопределенность положения частицы, умноженная на неопределенность ее импульса, всегда должна быть больше постоянной Планка, численное значение которой тесно связано с энергией, переносимой одним квантом света.
Форма времени
Наша статья вызвала разнообразные отклики. Многих физиков она огорчила, но зато обрадовала тех религиозных лидеров, которые верили в акт Творения — здесь было его научное доказательство. Между тем Лифшиц и Халатников оказались в неловком положении. Они не могли ни оспорить математическую теорему, которую мы доказали, ни признать в условиях советской системы, что они ошиблись, а западные ученые оказались правы. И все же они сохранили лицо, найдя более общее семейство решений с сингулярностью, которое не было специальным в том смысле, в котором это относилось к их прежним решениям. Последнее позволило им объявить сингулярности, а также начало и конец времени советским открытием.
Большинство физиков по-прежнему инстинктивно не любят мысль о том, что время имеет начало или конец. Поэтому они отмечают, что данная математическая модель не может считаться хорошим описанием пространства-времени вблизи сингулярности. Причина состоит в том, что общая теория относительности, которая описывает силу гравитации, является, как отмечалось в главе 1, классической теорией и не учитывает неопределенности квантовой теории, которая управляет всеми другими известными нам силами. Эта несовместимость не играет никакой роли в большей части Вселенной на протяжении большей части времени, поскольку масштаб, в котором искривляется пространство-время, очень велик, а масштаб, в котором существенны квантовые эффекты, очень мал. Но вблизи сингулярности эти два масштаба становятся сравнимыми и квантовые гравитационные эффекты должны становиться существенными. Поэтому в теореме о сингулярности мы с Пенроузом в действительности установили, что наша классическая область пространства-времени ограничена со стороны прошлого и, возможно, со стороны будущего областями, в которых существенны эффекты квантовой гравитации.
ПОЛЕ МАКСВЕЛЛА
В 1865 г. британский физик Джеймс Клерк Максвелл объединил все известные законы электричества и магнетизма. Теория Максвелла базируется на существовании «полей», которые передают действие из одного места в другое. Он догадался, что поля, которые передают электрические и магнитные возмущения, представляют собой динамические сущности: они могут колебаться и перемещаться в пространстве. Максвелловский синтез электромагнетизма можно выразить всего двумя уравнениями, которые описывают динамику этих полей. Он сам вывел первое важнейшее следствие своих уравнений — то, что электромагнитные волны всех частот распространяются в пространстве с одной и той же фиксированной скоростью, со скоростью света.
Электромагнитное излучение распространяется сквозь пространство как волна, в которой электрическое и магнитное поля колеблются, подобно маятнику, в направлении, поперечном движению самой волны. Излучение может состоять из колебаний полей с разными длинами волн.
Чтобы понять происхождение и судьбу Вселенной, нам необходима квантовая теория гравитации, и она будет предметом большей части этой книги.
Квантовые теории для таких систем, как атомы, с конечным числом частиц, были сформулированы в 1920-х гг. Гейзен-бергом, Шрёдингером и Дираком. (Дирак также занимал когда-то мое кресло в Кембридже, но и при нем оно не было моторизовано.) Однако попытка распространить квантовые идеи на максвелловское (электромагнитное) поле, которое описывает электричество, магнетизм и свет, столкнулась с трудностями.
Можно представлять себе максвелловское поле состоящим из волн разной длины (длина волны — расстояние от одного ее гребня до другого). В волне поле колеблется от одного значения к другому, подобно маятнику (рис. 2.9).
Рис. 2.9 Движение волны и колебания маятника
Согласно квантовой теории основное состояние маятника, то есть состояние с наименьшей энергией, — это вовсе не покой в самой низкоэнергетической точке в направлении прямо вниз. В данном случае он имел бы одновременно определенное положение и определенную скорость, равную нулю.
Согласно принципу Гейзенберга маятник не может висеть, указывая строго вниз, и обладать при этом нулевой скоростью. Квантовая теория предсказывает, что даже в состоянии наименьшей энергии он должен испытывать минимальные флуктуации.
Это означает, что положение маятника должно задаваться распределением вероятности. Если он находится в основном состоянии, то с наибольшей вероятностью будет указывать прямо вниз, но имеется также вероятность обнаружить его под небольшим углом к вертикали.
Это нарушало бы принцип неопределенности, который запрещает точное измерение положения и скорости в один и тот же момент времени. Неопределенность положения, умноженная на неопределенность импульса,[7] должна быть больше некоторой величины, известной как постоянная Планка — ее численное значение слишком длинное, чтобы его здесь выписывать, поэтому мы будем обозначать ее символом Л.
Так что основное состояние маятника, или состояние с наименьшей энергией, имеет ненулевую энергию в противоположность тому, что можно было ожидать. Оказывается, даже в основном состоянии маятник, как и любая колебательная система, должен совершать минимального размера флуктуации, называемые нулевыми колебаниями. Это означает, что маятник необязательно будет указывать прямо вниз, есть также вероятность обнаружить его отклоненным на небольшой угол от вертикали (рис. 2.10).
Рис. 2.10 Маятник и распределение вероятности
Подобным образом даже в вакууме, то есть в состоянии наименьшей энергии, волны максвелловского поля не затухают до нуля, но могут иметь небольшие размеры. Чем выше частота (количество колебаний в минуту) маятника или волны, тем больше энергия основного состояния.
При учете флуктуации основного состояния в максвеллов-ском поле электрона его видимые масса и заряд оказываются бесконечными, что, конечно, не соответствует наблюдениям. Однако в 1940-х гг. физики Ричард Фейнман, Джулиан Швин-гер и Синъитиро Томонага разработали согласованный метод устранения, или «вычитания», этих бесконечностей, чтобы иметь дело только с конечными наблюдаемыми значениями масс и энергий.[8] И все же флуктуации основного состояния вызывают небольшие эффекты, которые можно измерить и которые подтверждаются экспериментом. Похожие схемы избавления от бесконечностей работают и для полей Янга — Миллса в теории, которую разработали Чженьнин Янг и Роберт Миллс. Теория Янга — Миллса — это расширение теории Максвелла, которое описывает действие двух других сил, называемых слабым и сильным ядерными взаимодействиями. Однако в случае квантовой теории гравитации флуктуации основного состояния вызывают гораздо более серьезные эффекты. Здесь тоже каждая длина волны имеет свою энергию основного состояния.
7
Импульс — произведение массы на скорость.
8
Эта работа была отмечена Нобелевской премией по физике за 1965 г