Добавить в цитаты Настройки чтения

Страница 28 из 70

Рис. 4.8 Скрытые тетраэдральные отношения в электромагнитной волне

Здесь важно упомянуть: эта тайна неоднократно открывалась разными мыслителями, только для того, чтобы снова оказаться забытой наукой. Работа Тома Бирдена убедительно показала, что Джеймс Клерк Максвелл знал об этом, когда писал свои сложные “кватернионные” уравнения. Позднее Оливер Хэвисайд разбил модель на четыре простых кватерниона и разрушил скрытый внутренний “потенциал” тетраэдра. Также, скрытый тетраэдр наблюдается у Уолтера Расселла, а позже у Бакминстера Фуллера. Совершая свои открытия, Джонсон не знал о предыдущих прорывах.

Следующая загадка возникает тогда, когда мы изучаем субатомные “частицы”, известные как кварки. Когда атомная структура вдруг разрушается, в пузырьковой камере появляются короткие траектории, которые будут отлетать от нормального спиралевидного пути “частицы”; они и были названы “кварками”. После высвобождения, “кварки” очень быстро исчезают. Геометрия их движений была тщательно проанализирована, поскольку единственное, что вы можете по-настоящему определить при анализе посредством пузырьковой камеры, это разные геометрические формы движения. Было открыто много разных форм “кварков”, причем каждая форма обладала разными геометрическими свойствами, ошибочно называемыми “цветом”, “шармом” и “странностью”. Мюррей Гелл-Манн первым создал единую модель, демонстрирующую как именно взаимосвязаны эти разные геометрические свойства. Он назвал ее “Восьмеричным Путем”. Замечательно, что единая геометрическая структура, которую мы видим, — тетраэдр:

Рис. 4.9 Тетраэдр, видимый в организации “кварков” “Восьмеричного Пути” Гелл-Манна

Итак, что же мы видим? Очевидно, что каждая точка — это отдельный “кварк”. Джонсон утверждает, что “кварки” высвобождаются тогда, когда эфирный энергетический поток тетраэдра внутри атома вдруг разрушается. В течение короткого промежутка времени, высвобожденные энергетические фрагменты будут продолжать течь с теми же свойствами вращения/геометрии, которыми они обладали, будучи связанны в атоме; но они очень быстро возвращаются обратно в эфир. Разные “кварки” не следует рассматривать как возникшие в результате разрушения одного атома, поскольку угол, под которым разрушается атом, определяет, какая часть его внутреннего геометрического Единства будет высвобождена. Поэтому кварки следует тщательно изучать по отдельности. А вот что еще интереснее: в модели Гелл-Манна находятся и другие “свернутые” геометрические частоты, такие как куб-октаэдр; просто тетраэдр — это одна из трех разных открытых им иерархий.

И вновь, традиционный научный мир рассматривает Восьмеричный Путь Гелл-Манна как просто удобную геометрическую организацию, и ничего больше. В следующем отрывке д-р Мило Вольф указывает на тот факт, что геометрия могла бы быть решением для понимания структуры “ядерных пространственных резонансов” в квантовой сфере (страница 198 его книги):

“Другая интересная проблема с полезным результатом — увидеть, можно ли обнаружить способ связать ядерные пространственные резонансы с объяснением теории групп зоопарка ядерных частиц. Одно из названий этой теории — Восьмеричный Путь, открытый Гелл-Манном и Нееманом в 1960 году. Теория умно использует геометрическое группирование для определения их параметров: спина, четности, числа изотопов, числа странностей. Теория групп еще не раскрыла физическую структуру, такую как пространственные резонансы. Если связь существует, тогда логично ожидать, что решения уравнения волны пространственного резонанса обладали бы ортогональными свойствами, соответствующими Восьмеричному Пути. Волнующая перспектива”.

Интересно: когда мы заканчивали эту часть книги, с нами связался д-р Р. Б. Дункан, опубликовавший в Интернете очень детальную и основательную работу, объясняющую структуру атома с точки зрения теории групп, упомянутой выше Вольфом. Прежде, чем опубликовать решение, Дункан работал над этой проблемой тридцать лет!

Рис. 4.10 180° углы вращения “электронов”, создаваемые импульсами, движущимися над октаэдральными энергетическими формами





Следующее положение, которое нужно рассмотреть, — спин (вращение). Много лет физики знали, что, двигаясь, энергетические частицы “вращаются”. Например, представляется, что, двигаясь в атоме, “электроны” непрерывно совершают резкие повороты на 180° или “полуспины”. Часто наблюдают, что при движении “кварки” совершают “одну треть” или “две трети” спина, что позволило Гелл-Манну организовать их движения в тетраэдр или другие геометрии. Никто из представителей официальной науки не дал адекватного объяснения, почему это происходит.

Модель Джонсона показывает, что 180° “спин” электронных облаков создается движением октаэдра, что видно на рис. 4.10. Важно осознать, что 180° движение на самом деле возникает из двух 90° поворотов каждого октаэдра. Чтобы оставаться в том же положении в матрице окружающей его геометрии, октаэдр должен “опрокинуться назад”, то есть на 180°. Тетраэдр же, чтобы остаться в том же положении, должен совершить либо 120° (одна треть спина), либо 240° (две трети спина). Более просто это будет объясняться в разделе 4.9 ниже. (Другие теоретики эфира, такие как Вольф, Крейн, Гинзбург и Красноголовец, имеют свои объяснения феномена полуспина, основанные на жидком потоке.)

Этим же процессом объясняется и загадка спиралевидного движения торсионных волн. Где бы вы ни находились во Вселенной, даже “в вакууме”, эфир всегда будет пульсировать в этих геометрических формах, образуя матрицу. Поэтому любой движущийся в эфире импульс момента будет проходить по граням геометрических “жидких кристаллов” в эфире. Следовательно, спиралевидное движение торсионной волны создается простой геометрией, через которую она должна пройти при своем движении.

Хотя мы упорно работали над тем, чтобы упростить этот раздел, визуализировать тонкоструктурную константу намного труднее. Поэтому, если вам трудно читать, его можно пропустить и перейти к итоговой части в разделе 4.10, не потеряв главную “нить” повествования книги. Мы включили этот раздел для тех, кому хотелось бы видеть, насколько далеко заходит “матричная” модель. Тонкоструктурная константа — еще один аспект квантовой физики, о котором даже не слышали некоторые представители официальной науки, возможно, потому, что она абсолютно необъяснима тем, кто склонен верить в модели, основанные на частицах.

Представьте, что электронное облако похоже на гибкий резиновый шар, и каждый раз, когда поглощается или высвобождается “фотон” энергии (что известно как спаривание), облако растягивается и изгибается, как будто дрожит. Электронное облако всегда будет “ударяться” в фиксированном, точном пропорциональном отношении к размеру фотона. Это значит: фотоны большего размера будут оказывать бо льшие “удары” на электронное облако, фотоны меньшего размера оказывают меньшие “удары” на электронное облако. Это отношение остается постоянным, не смотря на единицы измерения. Как и постоянная Планка, тонкоструктурная константа — еще одно “отвлеченное” число. Это значит, что мы будем получать одну и ту же пропорцию, не зависимо от того, в каких единицах мы ее измеряем.

Эта константа непрерывно изучалась посредством спектроскопического анализа, и в своей книге Странная теория света и материи очень уважаемый физик Ричард П. Фейнман объяснил эту загадку. (Следует помнить, что слово “спаривание” означает соединение или разделение фотона и электрона.)

“Существует очень глубокий и красивый вопрос, связанный с наблюдаемой константой спаривания e, — амплитудой реального электрона для испускания или поглощения реального фотона. Это простое экспериментально определенное число близко к 0,08542455. Мои друзья-физики его не признают, потому что им нравится запоминать это число как инверсию его квадрата — около 137,03597, с неопределенностью двух последних десятичных знаков. Оно остается загадкой и по сей день, хотя было открыто более 50 лет назад; и все хорошие физики-теоретики вешают его на стену и волнуются о нем.