Страница 31 из 38
Аналогичные по характеру трудности возникают при использовании теоретико-графового метода, в рамках которого модель внешнего мира представляется в виде графа, узлы которого соответствуют возможным состояниям внешней среды, а дуги - возможным действиям, переводящим систему из одного состояния в другое.
Ограничены возможности описания реального мира и с помощью вектор-функций, определенных на нормированных пространствах, что имеет место в случае методов, использующих основные положения теории автоматического управления (Ф.М.Кулаков,1976).
Одним из возможных путей решения проблемы явился подход, предполагающий использование семантических связей между понятиями, включенными в модель внешнего мира и учет прагматики внешнего мира. Это нашло свое отражение в исследованиях советских ученых, например, П.М.Амосова в области развития М-сетей, Д. А. Поспелова, В. Н. Пушкина и Ю. И. Клыкова по ситуационному управлению, а также ряда зарубежных специалистов, в том числе Р.Шенка по теории семантической зависимости (conceptual dependency), Дж. Уилкса в области семантики предпочтений (preference semantics), Ч. Ригера по теории семантических наложений (conceptual overlays) и др.
Наиболее значительной среди появившихся за последние годы была теория фреймов (frames) M. Минского, привлекшая к себе пристальное внимание специалистов в области искусственного интеллекта (Р. Шенк, Р. Абельсон, 1975; Дж. Лаубш, 1975; Дж. Майлопулос, П. Коэн, А. Борджида, Л. Шугар, 1975; Д. А. Поспелов, 1976; Д. А. Поспелов, Е. Н. Ефимов,1977; Н. Н. Перцова,1977 и др.). Впервые теория была опубликована в 1974 г.
В своей теории М. Минский отказался от попыток формировать модель внешнего мира на основе разрозненных, отдельных фактов или понятий. Центральным моментом является его утверждение о том, что любая машинная модель, отражающая сложности реального мира, должна строиться в виде достаточно большой совокупности определенным образом сформированных данных - фреймов, представляющих собой модели стереотипных (часто повторяющиеся) ситуации. Ситуация понимается здесь в обобщенном смысле, т. е. это может быть действие, рассуждение, зрительный образ, повествование и т.д. Фрейм представляет собой не одну конкретную ситуацию, а наиболее характерные, основные моменты ряда близких ситуаций, принадлежащих одному классу. В переводе с английского frame означает скелет, остов, рамка, что лишний раз подчеркивает общность представленных в нем сведений о моделируемом явлении. Графически фрейм можно изобразить в виде сети, состоящей из узлов и связей между ними. Каждый узел представляет собой определенное понятие, которое - и в этом заключается основной смысл теории - может быть, а может и не быть задано в явном виде. В последнем случае оно может быть конкретизировано в результате процесса согласования данного фрейма с некоторой конкретной ситуацией, имеющей место во внешнем мире. Незаданные в явном виде узлы называются терминалами. Они образуют нижние уровни графовой структуры, тогда как на верхних уровнях располагаются понятия, которые всегда справедливы в отношении представляемой данным фреймом ситуации. Таким образом, совокупность заданных в явном виде узлов - понятий образует основу для "понимания" любой конкретной ситуации из определенного для данного фрейма класса ситуаций. "Понимание" происходит путем конкретизации терминалов и согласования возможных для каждого из них понятий с вполне определенной, существующей во внешнем мире обстановкой. Центральным моментом является использование одних и тех же терминалов различными фреймами, что позволяет координировать информацию, собираемую из разных источников. Группы связанных между собой фреймов объединяются в системы, которые могут отражать действия, причинно-следственные связи, изменения понятийной точки зрения и т. д.
В своей теории М. Минский не проводит границы между теорией человеческого мышления и теорией построения "думающих" машин (искусственного интеллекта). Он полагает, что процессы человеческого мышления базируются на хранящихся в его памяти материализованных, многочисленных запомненных структурах данных - фреймах, с помощью которых человек осознает зрительные образы (фреймы визуальных образов), понимает слова (семантические фреймы), рассуждения, действия (фреймы-сценарии), повествования и т.д. Процесс понимания при этом сопровождается активизацией в памяти соответствующего фрейма и согласованием его терминальных вершин с текущей ситуацией. В случае неудачи из памяти с помощью сети поиска информации, объединяющей системы фреймов, "выбирается" другой фрейм, терминалы которого, возможно, окажутся между собой в более подходящих отношениях применительно к той же рассматриваемой ситуации.
Процесс последовательной замены одного фрейма другим особенно наглядно проявляется в таких областях человеческого мышления, как понимание естественного языка, рассуждение, вывод по аналогии и др. Это следует из наших интуитивных представлений о процессе мышления, который начинается с наводящих на мысль, но несовершенных образов, прогрессивно заменяемых лучшими, но всё еще несовершенными идеями.
Представление знаний о мире с помощью систем фреймов оказывается весьма плодотворным во многих областях исследований по искусственному интеллекту, начиная от понимания естественного языка и кончая проблемами машинного восприятия слуховых и зрительных образов. Подтверждением тому служат многочисленные работы таких известных специалистов в области искусственного интеллекта, как Р.Шенк, Р.Абельсон, Ч.Ригер, Е.Чарняк, Дж.Уилкс и др., посвященные конкретизации и развитию теории фреймов.
Весьма обнадеживающим является использование концепции фрейма и применительно к задаче построения информационно-управляющего комплекса манипуляционного робота. Исследования в этом управлении проводятся в Ленинградском научно-исследовательском вычислительном центре АН СССР под руководством В.М.Пономарева и Ф.М.Кулакова.
Вместе с тем следует отметить, что подход М.Минского к решению проблемы представления знаний не лишен недостатков. В частности, человек способен понять не только известные, но и новые ситуации, к чему фреймы пока еще не приспособлены. Видимо, разработка механизмов машинного "понимания" новых фактов на 5азе системы фреймов точно так же, как и развивающихся во времени действий, еще впереди.
Существует еще целый ряд вопросов, которые не затрагиваются автором в данной книге. Например, проблема принятия решений на базе системы фреймов, в том числе проблема планировании действий робота. Однако это не следует понимать как недостаток данной работы, поскольку автор ставил перед собой цель изложить в ней общие вопросы теории фреймов и дать толкование ее основных положений.
Своеобразное изложение автором материала довольно трудно для восприятия. Именно поэтому книга дополнена настоящим материалом, в котором сделана попытка краткой интерпретации работы М.Минского. Этот материал не претендует на полное отображение всех идей настоящей книги, а имеет более конкретный характер благодаря включению в него примеров некоторых приложений теории фреймов. Примеры взяты из работ Р. Шенка (1975), Р. Абельсона (1973), И. Ригера (1975), а также составлены автором настоящего приложения.
Чтобы сделать изложение материала этого приложения замкнутым, понятным без обращения к переводу книги, в него включены в сжатой форме некоторые фрагменты перевода. Хотелось бы отметить, что весьма сложная форма изложения материала первоисточника в сочетании с еще не устоявшейся терминологией серьезно затрудняли перевод. В связи с этим считаю своим приятным долгом выразить благодарность В. М. Пономареву, Д. А. Поспелову, и В. Л. Стефанюку за ценные советы в процессе работы над книгой.