Добавить в цитаты Настройки чтения

Страница 20 из 24

2) при взаимодействии солей кальция со щелочами: Ca(NO3)2 + 2NaOH = Ca(OH)2 + 2NaNO3.

Химические свойства:

1) при нагревании до 580 °C разлагается: Са(OH)2 = СаO + H2O;

2) реагирует с кислотами: Ca(OH)2 + 2HCl = CaCl2 + 2H2O.

58. Жесткость воды и способы ее устранения

Так как кальций широко распространен в природе, его соли в большом количестве содержатся в природных водах. Вода, имеющая в своем составе соли магния и кальция, называется жесткой водой. Если соли присутствуют в воде в небольших количествах или отсутствуют, то вода называется мягкой. В жесткой воде мыло плохо пенится, поскольку соли кальция и магния образуют с ним нерастворимые соединения. В ней плохо развариваются пищевые продукты. При кипячении на стенках паровых котлов образуется накипь, которая плохо проводит теп-лоту, вызывает увеличение расхода топлива и изнашивание стенок котла. Жесткой водой нельзя пользоваться, проводя ряд технологических процессов (крашение). Образование накипи: Са + 2НСО3 = Н2О + СО2 + СаСО3?.

Перечисленные выше факторы указывают на необходимость удаления из воды солей кальция и магния. Процесс удаления этих солей называется водоумягчением, является одной из фаз обработки воды (водоподготовки).

Водоподготовка – обработка воды, используемая для различных бытовых и технологических процессов.

Жесткость воды подразделяется на:

1) карбонатную жесткость (временную), которая вызывается наличием гидрокарбонатов кальция и магния и устраняется с помощью кипячения;

2) некарбонатную жесткость (постоянную), которая вызывается присутствием в воде сульфитов и хлоридов кальция и магния, которые при кипячении не удаляются, поэтому она называется постоянной жесткостью.

Верна формула: Общая жесткость = Карбонатная жесткость + Некарбонатная жесткость.

Общую жесткость ликвидируют добавлением химических веществ или при помощи катиони-тов. Для полного устранения жесткости воду иной раз перегоняют.

При применении химического метода растворимые соли кальция и магния переводят в нерастворимые карбонаты:

Более модернизированный процесс устранения жесткости воды – при помощи катионитов.

Катиониты – сложные вещества (природные соединения кремния и алюминия, высокомолекулярные органические соединения), общая формула которых – Na2R, где R – сложный кислотный остаток.

При пропускании воды через слой катионита происходит обмен ионов (катионов) Na на ионы Са и Mg: Са + Na2R = 2Na + CaR.

Ионы Са из раствора переходят в катионит, а ионы Na переходят из катионита в раствор. Чтобы восстановить использованный катионит, его необходимо промыть раствором поваренной соли. При этом происходит обратный процесс: 2Na + 2Cl + CaR = Na2R + Ca + 2Cl.

59. Общая характеристика подгруппы бора

Внешняя электронная конфигурация у всех элементов подгруппы – s2p1. Характерным свойством подгруппы IIIA является полное отсутствие металлических свойств у бора и типичные металлические свойства у таллия. Элементы, стоящие между ними в подгруппе, проявляют промежуточные свойства.

Получение. Наиболее важным является алюминий. Проявляет характерные свойства металла – отражательная способность, проводимость, прочность, деформируемость. Алюминий образует ион в степени окисления +3, гидроксид проявляет свойства кислоты и основания (амфотерность). Алюминий получают из природного минерала боксита (Al2O3), подвергаемого обогащению или очистке. Полученный оксид добавляют к расплаву криолита Na3AlF6 в электролизной стальной ванне (катод), футерованной графитом. Анод-стержни из углерода. По этой технологии (процесс Холла—Эру) получают алюминий чистотой 98 %. Дальнейшую очистку проводят электролизом методом Хупса.





Бор в виде аморфного коричневатого порошка получают восстановлением B2O3 активным металлом (щелочным или магнием). При получении загрязняется примесями боридов, например Mg3B2. Более чистый бор получают восстановлением из BBr3. Другие элементы этой подгруппы получают восстановлением их из оксидов.

Химические свойства:

1) элементы подгруппы IIIA образуют оксиды и гидроксиды со степенью окисления III. Свойства их в ряду от алюминия до таллия изменяются от кислотных к основным;

2) галогениды всех элементов этой подгруппы имеют состав MеX3, а таллий, кроме того, образует TlCl, во многом сходный с AgCl;

3) элементы и их соединения взаимодействуют с водой;

4) гидроксиды элементов подгруппы IIIA все, кроме таллия, взаимодействуют со щелочами.

Применение. Бор используют как добавку к цветным сплавам и стали, как противокоррозийное средство, получают из него буру, используемую в производстве глазури, эмали, стекла, сварке, паянии, как удобрение.

Галогениды элементов подгруппы IIIA применяются в отраслях промышленности и в лабораторных исследованиях. На основе алюминия производят множество сплавов. Применяют при изготовлении химической аппаратуры, проводов, конденсаторов, для алитирования, для получения искусственных рубинов, сапфиров и наждака.

Галлий используют для наполнения кварцевых термометров, добавляют к алюминию для получения сплавов, поддающихся горячей обработке. Индий используют для покрытия рефлекторов, вкладышей подшипников и для изготовления плавких предохранителей. Таллий используется в оптических приборах, работающих в оптической области спектра, в фотоэлементах.

60. Алюминий. Применение алюминия и его сплавов

Алюминий расположен в 3-й группе главной подгруппы, в 3 периоде. Порядковый номер 13. Атомная масса ~27. Р-элемент. Электронная конфигурация: 1s22s22p63s23p1. На внешнем уровне 3s23p1находятся 3 валентных электрона. Степень окисления +3, валентность – III.

Физические свойства: алюминий – металл серебристо-белого цвета, мягкий, механически прочный, тепло– и электропроводный, легко вытягивается в проволоку, прокатывается в тонкую фольгу, легко образует сплавы.

Химические свойства:

1) при обычной температуре реагирует с кислородом, образую окисную пленку, препятствуя дальнейшему окислению металла: 4Аl + 3О2 = 2Аl2О3;

2) алюминий, лишенный защитной оксидной пленки, взаимодействует с водой: 2Аl + 6Н2О = 2Аl(ОН)3? + 3Н2?;

3) алюминий энергично взаимодействует с растворами щелочей:

4) при нагревании алюминий взаимодействует с галогенами, с азотом, с углеродом, с серой, а также с аммиаком:

Получение. В промышленности алюминий получают электролизом раствора Аl2О3 в расплавленном криолите Na3AlF6 с добавлением СаF2. Алюминий выделяется на катоде.

Нахождение в природе: алюминий – один из наиболее распространенных элементов в земной коре – до 250 руд, содержащих алюминий: боксит – Аl2О3?хH2O – содержит от 32–60 % Аl2О3 (глинозема); корунд – Аl2О3 – кристаллическая модификация глинозема; рубин и сапфир – драгоценные камни; нефелин – (К, Na)2О?Аl2О3?2SiО2 – одна из важнейших алюминиевых руд; каолин – Аl2О3?2SiО2?2H2O – составляет основу всех глин; алунит – К2SO4?Аl2(SO4)3?2Аl2О3?6H2O – относятся к важнейшим алюминиевым рудам; криолит Na3[AlF6]; шпинель Мg(АlО2)2 и метаалюминаты типа шпинели Zn(АlО2)2. Сплавы алюминия: дюралюминий – 94 % Аl, 4 % Сu, по 0,5 % Мg, Мn, Fe и Si; силумин – Аl + ~13 % Si; магналий – Аl с содержанием Мg – 0,5—11,5 %.

Применение алюминия и его соединений и сплавов: алюминий и его соединения применяется в быту и во всех отраслях народного хозяйства: в машиностроении, автостроении, в химической промышленности (для производства и транспортировки холодной концентрированной HNO3, т. к. алюминий в ней пассивируется). При помощи алюмотерапии производят сварку рельсов, проводят сварочные работы под водой. Чистым алюминием покрывают бензобаки, что способствует предохранению бензина от теплового излучения.