Добавить в цитаты Настройки чтения

Страница 72 из 80



Уникальность изучения генетики поведения на насекомых заключается в том, что у них в отличие от позвоночных животных мозаичный, а не регуляторный тип развития. Среди насекомых встречаются мозаичные (или гинандроморфные) особи, у которых участки тела имеют XX (самковую) и ХО (самцовую) ткань. Такие особи появляются иногда случайно в популяции насекомых. Уайтинг (Whiting, 1932) описал аномалии в поведении мозаичных особей у ос (Habrobracon juglandis).

У дрозофил гинандроморфные особи могут быть получены по желанию экспериментатора. Это достигается при использовании линии мух, имеющей кольцевую Х-хромосому, которая очень часто теряется в процессе онтогенетического развития, особенно на ранних его этапах.

Исследования Конопки и Бензера (Konopka, Benzer, 1971) показали, что на гинандроморфных особях можно анализировать даже относительно сложные формы поведения у дрозофил. Исследовался циркадный ритм. Первый этап работы показал, что ткань головы ответственна за осуществление суточного ритма. Биологические часы каждой линии мух определяются генетической особенностью ткани головы. Муха, имеющая мутантную голову, подчиняется суточному ритму, характерному для данной мутации, если даже ее тело имеет гены нормальной (дикой) мухи. В том случае, если голова мухи наполовину мутантная, а наполовину нормальная, муха может не подчиняться ни тому, ни другому ритму, а подчиняется некоему более сложному новому ритму. Такая модель, как указывает Бензер, может способствовать пониманию того, как взаимодействуют оба «полушария» мозга мухи при формирования нормального поведения.

Чрезвычайно важны данные получены при изучении генетики поведения у дрозофил Икедой и Капланом (Ikeda, Kaplan, 1970 a, b). Эти исследования имеют самое непосредственное отношение к пониманию природы функциональной активности мозга. Они дали прямое доказательство зависимости функциональной активности нейрона от одного гена. Авторами была выведена линия мух D. melanogaster, у которых при выходе из эфирного наркоза наблюдалось подергивание лапок. Ген, обуславливающий эту особенность, оказался локализованным в Х-хромосоме. В ту же хромосому были введены маркеры, изменяющие окраску тела мухи. Изучение мозаичных мух этой линии показало, что гиперкинез, вызываемый данным геном, связан только с грудным ганглием мухи. Мотонейроны каждой стороны тела функционируют независимо друг от друга.

При записи биопотенциалов единичных мотонейронов было обнаружено, что аномальная двигательная активность лапки, определяемая действием гена Hk1р, полностью соответствует появлению характерной биоэлектрической активности в нейроне.

Перерезка периферических нервов (нервных отростков) не отразилась на характере импульсной активности. Эти данные указывают на то, что биоэлектрическая активность, регистрируемая в момент гиперкинеза, имеет афферентную природу и связана с наличием в нейроне гена Hk1р.

Трудно переоценить значение этой работы. В ней дается прямое доказательство того, что биоэлектрическая активность нейрона зависит от его, генетического аппарата.

Этот факт дает основание для совершенно нового подхода к рассмотрению роли нейронов в осуществлении поведенческого акта.

В настоящее время имеются все основания для рассмотрения нейрона как единицы, функциональная активность которой интимно связана с ее генетическим аппаратом. Принятие этого положения объясняет одну из сторон хорошо известного всем физиологам факта: наличие в различных отделах мозга нейронов, специфически отвечающих изменением своей электрической активности на действие раздражителей разной модальности.

В самых различных отделах мозга существуют специфические нейроны, изменяющие биоэлектрическую активность в ответ на любые раздражители, связанные с основными параметрами окружающего мира: пространством, временем и движением.

Генетические исследования дают основания для пересмотра распространенного среди физиологов мнения о том, что активность нейронов определяется их местоположением в нервной сети. Приведенные данные дают все основания для изучения электрической активности отдельных нейронов в зависимости от их генетической детерминированности, которая сформировалась в процессе индивидуального развития нервной системы.



За последние годы выяснилось, что удобными объектами для изучения генетики поведения могут служить Escherichia coli, коловратки, нематоды, парамеции и другие относительно просто организованные организмы.

Весьма интересные исследования по генетике поведения были проведены на парамеции (P. aurelia).

Преимущество парамеций для физиолого-генетических исследований заключается в том, что в результате автогамии гарантируется проявление рецессивных мутаций во всех хромосомных локусах.

При аутогамии процессы, осуществляющиеся в хромосомном аппарате клеток, приводят к объединению гаплоидных наборов хромосом. В результате такого самооплодотворения в культуре без длительного инбридинга поддерживаются гомозиготная линия. Использование мутагена индуцирует в колонии аутогамию и тем самым позволяет сохранять в гомозиготном состоянии появляющиеся мутантные особи, прежде чем они оказываются отсортированными экспериментаторами.

Весьма плодотворные исследования проводятся в настоящее время Кунгом (Kung, 1975) и сотрудниками Лаборатории молекулярной биологии Висконсинского университета. Они подошли к реальному расчленению генетическим методом вызванного мембранного потенциала у P. durelia.

Наличие чистых линий, поддерживаемых благодаря аутогамии, дает возможность проведения гибридологического анализа. Поскольку у парамеций, помимо аутогамии, происходит и конъюгация, между отдельными мутантными формами может быть получено поколение F1, а в результате последующей аутогамии — F2. С помощью такого своеобразного гибридологического анализа получена информация о комплементарности, аллельности, сцеплении, доминантности, а также эпистазе тех генов, которые контролируют поведение парамеции. Двигательная активность парамеций, как это установлено, управляется их мембранным потенциалом.

Проводимые исследования показывают, что электрические явления, сопровождающие процесс возбуждения у парамеций, могут быть изменены рядом мутаций, которые оказывают влияние на их поведение.

У парамеций дикого типа происходит спонтанная разрядка мембранного потенциала при помещении их в среду, богатую ионами Na+. Этот Na-триггерный процесс состоит из серии эпизодов, характерных для потенциала действия дикого типа парамеций. После быстрой деполяризации (начинающейся с потенциала покоя — 20 мВ) наблюдается серия спайковых колебаний, длящихся в течение нескольких сотен миллисекунд. После этого периода спайковой активности мембрана реполяризуется. Оказывается, поведение (реакция избегания) соответствует отдельным эпизодам потенциала действия. Такой вывод можно сделать на основании сравнения характера потенциалов действия на один и тот же раздражитель у различных мутантных линий парамеций.

Так, например, у мутации Fast-2, которая является нечувствительной к ионам Na+, вообще не наблюдается Na-триггерной деполяризации при помещении их в раствор с повышенным содержанием натрия. У особей этой линии специфически нарушена реакция на проницаемость через мембрану ионов Na+. В результате происходит блокирование деполяризации на самых первых этапах развития этого процесса.

У мутации Pawn характеризующая ее кривая деполяризации по времени соответствует таковой у особей нормального типа. Однако у мутантных парамеций отсутствует спайковая активность. Эта мутация связана с дефектом активации ионами Са2+, что проявляется около вершины негативной волны, в том ее участке, где начинается спайковая активность у особей дикого типа. Нарушение поведения особей этой линии характеризуется тем, что у них не происходит обратного биения ресничек, вследствие чего они не обходят препятствия, а двигаются только вперед. Мутация «параноик» обусловливает затяжной характер процесса реполяризации, который может длиться в течение более одной минуты вместо нескольких сот миллисекунд. Имеются основания считать, что эта мутация блокирует механизм реполяризации.