Страница 64 из 151
Поиск ясной и прозрачной связи между формализмом квантовой механики и опытом повседневной жизни будет, несомненно, продолжаться до конца, и трудно сказать, который из известных подходов, если среди них такой вообще есть, в конечном счёте будет принят большинством. Если бы физики сегодня проголосовали, я не думаю, что нашёлся бы несомненный фаворит. К несчастью, экспериментальные данные могут оказать ограниченную помощь. Хотя предложение Жирарди–Римини–Вебера даёт предсказания, которые могут в определённых ситуациях отличаться от стандартной квантовой механики с её двумя стадиями эволюции, отклонения слишком малы, чтобы их можно было зафиксировать современной технологией. Ситуация с другими тремя предложениями ещё хуже, поскольку они ещё более решительно препятствуют экспериментальной верификации. Они полностью согласуются со стандартным подходом, так что все они дают одинаковые предсказания для того, что можно было бы наблюдать или измерить. Они отличаются только в отношении того, что происходит за кулисами, если вообще что-то происходит. То есть они отличаются только в отношении того, что квантовая механика предполагает в качестве фундаментальной основы природы реальности.
Хотя проблема квантовых измерений остаётся нерешённой, на протяжении последних нескольких десятилетий был разработан подход, который, хотя ещё неполон, но имеет широкую поддержку как вероятный компонент любого жизнеспособного решения. Он называется декогеренция.[149]
Декогеренция и квантовая реальность
Когда вы впервые сталкиваетесь с вероятностным аспектом квантовой механики, естественной реакцией является мысль, что это не более экзотично, чем вероятности, которые возникают при подбрасывании монетки или вращении рулетки. Но при знакомстве с квантовой интерференцией вы осознаёте, что вероятность в квантовой механике намного более фундаментальна. В повседневных примерах различным результатам — орёл против решки, красное против чёрного, один лотерейный номер против другого — присваиваются вероятности на основании понимания, что тот или иной результат определённо произойдёт и что каждый результат является конечным продуктом независимой, определённой истории. Когда монета подбрасывается, иногда вращательное движение таково, что выходит орёл, а временами таково, что выходит решка. Вероятность 50 на 50 мы относим не просто к конечному результату — орёл или решка, — но также к истории, которая привела к каждому результату. Половина возможных способов, которыми вы можете подбросить монету, приведут к орлу, а половина — к решке. Сами события, однако, являются совершенно отдельными, изолированными альтернативами. Нет смысла интересоваться, какие различные движения монеты усиливают друг друга, а какие гасят. Все они независимы.
Но в квантовой механике иная ситуация. Альтернативные пути, по которым электрон может следовать через две щели к детектору, — это не отдельные, изолированные истории. Возможные истории смешиваются, производя наблюдаемый результат. Некоторые пути усиливают друг друга, тогда как другие уничтожают друг друга. Такая квантовая интерференция между различными возможными историями отвечает за картину светлых и тёмных полос на детекторном экране. Так что основное различие между квантовым и классическим понятиями о вероятности заключается в том, что первое подвержено интерференции, а второе — нет.
Декогеренция является широко распространённым явлением, которое наводит мост между квантовой физикой малого и классической физикой не столь уж малого через подавление квантовой интерференции — т. е. путём резкого уменьшения того, что является ключевым различием квантовой и классической вероятности. Важность декогеренции была осознана давно, ещё в ранние времена квантовой теории, но её современное возрождение отсчитывается от плодотворной статьи немецкого физика Дитера Цея в 1970 г.,{150} и с тех пор разрабатывалось многими исследователями, включая Эрика Йоса, тоже из Германии, и Войцеха Цурека из Лос-Аламосской национальной лаборатории в Нью-Мексико.
Идея такова. Когда уравнение Шрёдингера применяется в простой ситуации, такой как прохождение отдельного изолированного фотона через экран с двумя щелями, оно приводит к известной интерференционной картине. Но этот лабораторный пример имеет две весьма специфические особенности, которые не характерны для событий реального мира. Первая состоит в том, что вещи, с которым мы сталкиваемся в повседневной жизни, больше и сложнее, чем отдельный фотон. Вторая — в том, что вещи, с которыми мы сталкиваемся в повседневной жизни, не изолированы: они взаимодействуют с нами и с окружением. Книга, находящаяся сейчас в ваших руках, подвергается контакту с человеком и, вообще, постоянно бомбардируется фотонами и молекулами воздуха. Более того, поскольку сама книга состоит из многих молекул и атомов, эти постоянно дрожащие составляющие непрерывно сталкиваются друг с другом. То же самое справедливо для стрелок измерительных приборов, для котов, для человеческих мозгов и просто для всего, с чем вы сталкиваетесь в повседневной жизни. На астрофизических масштабах Земля, Луна, астероиды и другие планеты непрерывно бомбардируются фотонами Солнца. Даже частичка пыли, плавающая в темноте космического пространства, подвергается непрерывным толчкам низкоэнергетических микроволновых фотонов, которые начали путешествовать по пространству спустя небольшое время после Большого взрыва. Итак, чтобы понять, что квантовая механика говорит о событиях реального мира, — в противоположность рафинированным лабораторным экспериментам, — мы должны применить уравнение Шрёдингера к этим более сложным, более беспорядочным ситуациям.
По существу, это было то, на что обратил внимание Цей. Его работа и работы многих других, кто последовал за ним, открыли нечто действительно удивительное. Хотя фотоны и молекулы воздуха слишком малы, чтобы оказать существенное влияние на движение большого объекта, например книги или кота, но они в состоянии сделать кое-что другое. Они непрерывно «толкают» волновую функцию большого объекта или, говоря на языке физики, они возмущают её когерентность: они размывают упорядоченную последовательность гребней и впадин, следующих друг за другом. Это критично, поскольку упорядоченность волновой функции является центральным свойством для генерирования интерференционных эффектов (см. рис. 4.2). Подобно тому как добавление маркирующих приборов в эксперимент с двумя щелями размазывает результирующую волновую функцию и поэтому размывает интерференционные эффекты, постоянная бомбардировка объектов составными частями окружающей среды также препятствует возникновению интерференционных явлений. С другой стороны, раз квантовая интерференция более невозможна, вероятности, присущие квантовой механике, с любой практической точки зрения ведут себя подобно вероятностям, присущим подбрасываемой монете и вращающейся рулетке. Когда декогеренция, вызванная взаимодействием с окружающей средой, размывает волновую функцию, экзотическая природа квантовых вероятностей растворяется в более привычных вероятностях повседневной жизни.{151} Это может означать решение загадки квантового измерения, которое, если действительно окажется решением, стало бы лучшим, на что мы можем надеяться. Я сначала опишу идею декогеренции в наиболее оптимистичном свете, а затем сделаю акцент на том, что ещё остаётся сделать.
Если волновая функция изолированного электрона показывает, что он имеет, скажем, 50% вероятности находиться здесь и 50% вероятности находиться там, мы должны интерпретировать эти вероятности, используя всю причудливость квантовой механики. Поскольку обе альтернативы могут проявить себя при смешивании и генерировать интерференционную картину, мы должны думать о них как о реальных в равной степени. Проще говоря, кажется, что электрон находится в обоих положениях. Что произойдёт, если мы измерим положение электрона неизолированными лабораторными инструментами обычного размера? Тогда в соответствии с неопределённостью местонахождения электрона стрелка инструмента имеет 50% вероятности указать на одно значение и 50% вероятности — на другое. Но вследствие декогеренции стрелка не будет находиться в призрачной смеси, указывая на обе величины; вследствие декогеренции мы можем интерпретировать эти вероятности в обычном, классическом, повседневном смысле. Как монета имеет 50%-й шанс упасть орлом и 50%-й шанс упасть решкой, но падает или орлом, или решкой, так и стрелка прибора имеет 50%-й шанс указать на одну величину и 50%-й шанс указать на другую величину, но она определённо укажет на одну или на другую.
[149]
Помимо использованного в переводе термина декогеренция, в русскоязычной литературе используется также термин декогерентизация, но использованный в переводе термин декогеренция нам кажется более удачным (и он тоже используется в русскоязычной научной литературе), так как он ближе к оригиналу по звучанию, и, кроме того, термин должен по смыслу быть своеобразным антиподом интерференции, что и поддерживается таким словообразованием. (Прим. ред.)
{150}
Для глубокого, хотя и несколько технического обсуждения стрелы времени в целом и роли декогеренции в частности, см.: Zeh H. D. The Physical Basis of the Direction of Time. Heidelberg: Springer, 2001 (см. также интересную, но уже немного устаревшую статью Дитера Цея: Zeh H. D. Quantum theory and time asymmetry. arXiv:quant-ph/0307013 — Прим. ред.).
{151}
Только для того чтобы дать вам ощущение, как быстро возникает декогеренция — как быстро влияние окружающей среды подавляет квантовую интерференцию и при этом сводит квантовые вероятности к привычным классическим, — приведём несколько примеров. Числа приблизительны, но смысл, который они передают, ясен. Волновая функция частички пыли, плавающей в вашей комнате и бомбардируемой дрожаниями молекул воздуха, станет декогерентной через примерно миллиардную от миллиардной от миллиардной от миллиардной (10−36) доли секунды. Если частичка пыли содержится в совершенной вакуумной камере и взаимодействует только с солнечным светом, её волновая функция будет декогерировать чуть медленнее, требуя тысячную от миллиардной от миллиардной (10−21) доли секунды. А если частичка пыли плавает в тёмных глубинах пустого пространства и взаимодействует только с реликтовыми микроволновыми фотонами Большого взрыва, её волновая функция станет декогерентной примерно за миллионную долю секунды. Эти числа экстремально малы, а это показывает, что декогеренция для чего-то даже столь крохотного, как частица пыли, происходит очень быстро. Для более крупных объектов декогеренция происходит ещё быстрее. Потому неудивительно, что хотя наша Вселенная и квантовая, мир вокруг нас выглядит так, как он выглядит (см., например: Joos E. Elements of Environmental Decoherence, in Decoherence: Theoretical, Experimental, and Conceptual Problems. Ph. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.-O. Stamatescu, eds. Berlin: Springer, 2000).