Добавить в цитаты Настройки чтения

Страница 133 из 151



Тем не менее, хотя запутывание невозможно использовать для сверхсветовых сообщений, но остаётся стойкое ощущение, что дальнодействующие корреляции между частицами столь странны, что их можно как-то использовать для чего-то экстраординарного. В 1993 г. Беннет со своими сотрудниками обнаружил одну такую возможность. Они показали, что квантовое запутывание можно использовать для квантовой телепортации. Вы не сможете послать сигнал со скоростью, превосходящей скорость света, но если вы собираетесь осуществить телепортацию частицы со скоростью, меньшей скорости света, то квантовое запутывание — то, что нужно.

И осуществить это можно весьма оригинальным способом. Вот как это делается.

Представим, что я хочу телепортировать конкретный фотон — назовём его фотоном A — из своего дома в Нью-Йорке своему другу Николасу в Лондон. Ради простоты проследим только за спином фотона — посмотрим, как можно точно телепортировать квантовое состояние спина фотона, т. е. как Николасу получить фотон с тем же распределением вероятности спина по осям, как и у моего фотона A.

Я не могу просто измерить спин фотона A, а затем позвонить Николасу и сказать, что ему сделать со своим фотоном, чтобы его спин соответствовал моим наблюдениям; на результат, который я получил, оказало бы влияние проведённое мной измерение, и поэтому он не будет отражать истинное состояние фотона A до измерения. Так что же делать? Выход предлагает Беннетт со своими коллегами: прежде всего, нам с Николасом надо иметь по дополнительному фотону (назовём их фотонами B и C), которые составляют вместе пару запутанных фотонов. Не важно, как мы добудем такие фотоны. Просто допустим, что мы с Николасом уверены в том, что хотя нас разделяет Атлантический океан, но если я измерю спин своего фотона B относительно одной из осей, а Николас — спин своего фотона C относительно той же оси, то наши результаты совпадут.

Затем, согласно Беннетту с сотрудниками, не следует напрямую измерять спин фотона A (того фотона, который я собираюсь телепортировать), поскольку это обернётся слишком сильным вмешательством. Вместо этого мне следует измерить некую совместную характеристику фотонов A и B. Например, квантовая теория позволяет мне определить, обладают ли фотоны A и B одинаковым спином относительно вертикальной оси, не измеряя спин каждого фотона по отдельности. Аналогично, квантовая теория позволяет определить, обладают ли фотоны A и B одинаковым спином относительно горизонтальной оси, не измеряя спин каждого фотона по отдельности. Выполнив такое совместное измерение, я не узнаю спин фотона A, но зато узнаю, как спин фотона A связан со спином фотона B. Это важная информация, и вот почему.

Удалённый фотон C запутан с фотоном B, поэтому, зная о связи фотонов A и B, я могу вывести, как фотон A связан с фотоном C. Если я теперь передам по телефону эту информацию Николасу, он сможет определить, что нужно сделать с фотоном C, чтобы его квантовое состояние точно соответствовало фотону A. Проделав необходимые манипуляции, он получит у себя фотон C, квантовое состояние которого будет идентично моему фотону A, а именно это и требуется, чтобы заявить, что фотон A был успешно телепортирован из Нью-Йорка в Лондон. Например, в простейшем случае, когда спин фотона B оказывается идентичным спину фотона A, тогда и спин фотона C оказывается идентичным спину фотона A, и уже больше ничего не нужно делать для телепортации. Фотон C будет находиться в том же квантовом состоянии, что и фотон A, что и требовалось.

Всё почти так. Такова идея в общих чертах, и ради простоты изложения я намеренно опустил кое-что необычайно важное. Сейчас я восполню этот пробел. Проводя совместное измерение фотонов A и B, я действительно узнаю о связи спинов этих фотонов. Но, как и любое наблюдение, такое измерение тоже воздействует на фотоны. Поэтому я не узнаю, как спины фотонов A и B были связаны до измерения. Вместо этого я узнаю, как они связаны после того, как сам акт измерения уже повлиял на них. Так что на первый взгляд кажется, что мы сталкиваемся с той же проблемой, как и при непосредственном измерении спина фотона A: в обоих случаях квантовое состояние фотона A меняется после измерения. И вот где к нам приходит на выручку фотон C. Поскольку фотоны B и C запутаны, то любое воздействие на фотон B в Нью-Йорке отразится на состоянии фотона C в Лондоне. Такова удивительная природа квантового запутывания, как мы обсуждали в главе 4. И действительно, Беннетт с сотрудниками математически показали, что благодаря запутыванию с фотоном B искажение, вносимое измерением, отпечатывается на удалённом фотоне C.

И вот что чрезвычайно интересно. Посредством измерения мы можем узнать, как связаны спины фотонов A и B, но сам процесс измерения влияет на оба фотона. Однако благодаря квантовому запутыванию это измерение влияет и на фотон C (даже если фотон C находится в тысячах километров от A и B), и это позволяет нам изолировать эффект влияния и тем самым получить информацию, обычно теряющуюся в процессе измерения. Если я теперь сообщу Николасу результат своего измерения, то он узнает, как связаны спины фотонов A и B после измерения, и через фотон C он получит доступ к результату влияния самого измерения. Это позволит Николасу использовать фотон C для того, чтобы, грубо говоря, вычесть влияние измерения и таким путём обойти препятствие, мешавшее копированию состояния фотона A. В действительности, Беннетт с сотрудниками детально показали, как путём простой манипуляции со спином фотона C (на основе информации о связи спинов фотонов A и B) Николас может гарантированно сделать так, чтобы квантовое состояние фотона C в точности воспроизводило состояние фотона A до измерения. Пока речь шла только о спине, но и другие характеристики квантового состояния фотона A (такие как вероятность нахождения на том или ином энергетическом уровне) могут быть скопированы аналогичным образом. Таким образом можно телепортировать фотон A из Нью-Йорка в Лондон.{292}

Как видно, квантовая телепортация включает в себя два этапа, на каждом из которых передаётся важная информация. Сначала мы выполняем совместное измерение фотона, предназначенного для телепортации, с фотоном из пары сцепленных фотонов. Изменение квантового состояния, связанное с актом измерения, благодаря квантовой нелокальности отпечатывается на удалённом партнёре из пары сцепленных фотонов. Таков первый этап — «квантовая часть» процесса телепортации. На втором этапе результат самого измерения сообщается по любому обычному каналу связи (телефон, факс, электронная почта...) — это «классическая часть» процесса телепортации. Комбинация этих двух этапов позволяет точно воспроизвести квантовое состояние фотона, предназначенного для телепортации, путём несложной операции (такой как вращение на некоторый угол вокруг определённой оси), применяемой к удалённому партнёру пары сцепленных фотонов.

Отметим две характерные черты квантовой телепортации. Поскольку начальное состояние фотона A было нарушено в ходе измерения, то только фотон C теперь находится в том начальном состоянии. Нет двух копий исходного фотона A, так что этот процесс точнее назвать квантовой телепортацией, а не квантовым копированием.{293} Более того, хотя мы телепортировали фотон A из Нью-Йорка в Лондон (и фотон в Лондоне стал неотличим от того фотона, который был в Нью-Йорке), но мы так и не узнали квантовое состояние фотона A. Фотон A в Лондоне обрёл ту же самую вероятность обладания спином относительно того или иного направления, какую имел фотон A до моего вмешательства, но мы не знаем, какова эта вероятность. Таков трюк, лежащий в основании квантовой телепортации. Возмущение, вызываемое актом измерения, препятствует нам узнать квантовое состояние фотона A, но в описанном подходе нам и не нужно знать квантовое состояние фотона, чтобы телепортировать его. Нам требуется знать, лишь один аспект его квантового состояния — то, что мы узнаем из совместного измерения с фотоном B. Квантовое запутывание с удалённым фотоном C предоставляет недостающую информацию для успешной телепортации фотона.

{292}

Приведём выкладки для читателя, знакомого с формализмом квантовой механики. Пусть начальное состояние моего фотона в Нью-Йорке описывается функцией

где и — два поляризационных состояния фотона, про которые мы будем предполагать, что они нормированные, но коэффициенты перед ними произвольны. Моя цель — предоставить Николасу информацию, достаточную для того, чтобы он смог привести свой фотон в то же самое квантовое состояние. С этой целью мы с Николасом для начала обзаводимся парой сцепленных фотонов в состоянии, скажем,



Таким образом, начальное состояние трёхфотонной системы описывается функцией

Проведя совместное измерение Белла подсистемы фотонов 1 и 2, я перевожу эту подсистему в одно из четырёх состояний:

Теперь перепишем начальное состояние трёхфотонной системы в терминах собственных состояний подсистемы фотонов 1 и 2:

Таким образом, выполнив измерение, я переведу систему в одно из этих четырёх состояний. После того как я сообщу Николасу (обычными средствами), какое состояние я обнаружил, он будет знать, что сделать с фотоном 3, чтобы воспроизвести начальное состояние фотона 1. Например, если я обнаружу состояние , то Николасу не потребуется ничего делать, поскольку в этом случае фотон 3 уже будет находиться в начальном состоянии фотона 1. Если же я получу другой результат, то Николасу придётся осуществить подходящее вращение (диктуемое конкретным результатом измерения), чтобы привести фотон 3 в желаемое состояние.

{293}

В действительности, математически подготовленный читатель заметит, что нетрудно доказать так называемую теорему о невозможности клонирования квантовых состояний. Предположим, что у нас есть унитарный оператор клонирования U, «удваивающий» любое квантовое состояние системы

Тогда результатом применения U к будет , а не дублированное состояние . Это противоречие показывает, что не существует такого оператора клонирования. (Впервые это было показано Вутерсом и Цуреком в начале 1980-х гг.)