Добавить в цитаты Настройки чтения

Страница 92 из 150

Такая рамка позволяет фиксировать несколько видов хрональных излучений - все зависит от применяемой процедуры измерения. Характер процедуры определяется особенностями хронального поля оператора, который участвует в измерении своим контуром, замкнутым через руки, а также глазами.

Если во время измерения оператор смотрит на верхнюю точку кольца, то последнее опрокидывается от поля, имеющего тот же знак, что и глаза. Для фиксации поля противоположного знака оператор на рамку не смотрит. Например, у оператора, смотрящего на рамку плюс-глазами, она срабатывает от плюс-поля. Чтобы определить минус-поле, такой оператор должен отвести свой взгляд в сторону. В обоих случаях ось кольца рамки должна быть направлена строго на источник хронального излучения.

Чтобы определить знаки своих глаз и пальцев, надо располагать каким-либо источником заранее известного знака. Соответствующим источником может служить, например, роза, которая всегда положительна, или гвоздика, которая всегда отрицательна. Вначале определяется знак глаз. Если рамка опрокидывается от розы, когда оператор смотрит на верхнюю точку кольца, то глаза излучают плюс-хрононы. Затем определяются знаки пальцев с помощью стеклянного пузырька с водой. Зарядив испытуемым пальцем воду, определяют ее знак по описанной выше технологии. Заряд удаляется, если пузырек с водой встряхнуть, например, слегка ударив им о стол.

Чтобы установить знак глаз другого человека, достаточно помахать перед его глазами пузырьком и затем найти знак заряженной воды. При всех определениях, как уже говорилось, рамку следует медленно перемещать относительно испытуемого объекта. В этом факте тоже можно усмотреть некоторое сходство между хрональным и магнитным явлениями.

Помимо У-образных на практике находят применения и многие другие разновидности рамок. В случае использования Г-образной проволочной рамки ее держат рукой за короткий отрезок, ориентированный вертикально. Горизонтальный участок поворачивается на определенный угол при прохождении над искомым предметом, например над копейкой, лежащей на полу. Коленчатые рамки поворачиваются вокруг горизонтальной оси. Об интенсивности хронального поля судят по углу поворота рамок. В параграфах 7 гл. XXVI и 11 гл. XXVII говорится о некоторых специфических тонкостях действия рамок.

В связи с изложенным я хочу подчеркнуть принципиальную допустимость и законность использования в науке экспериментальных методов, в которых необходимой составной частью измерительного прибора служат какие-либо свойства биообъекта, в частности экспериментатора, особенно если предметом изучения являются свойства, органически присущие экспериментатору, например, такие, как хрональное поле. Но даже при изучении и менее близких экспериментатору свойств тоже могут быть получены весьма ценные результаты. Вспомним, что гениальный Кавендиш, когда еще не существовало приборов для определения величины электрического заряда, открыл закон Кулона. О величине заряда он судил по силе вздрагивания слуги, через которого пропускал электричество...

В течение нескольких столетий, начиная с Галилея и Ньютона, в науке культивировались методы, получившие наименование объективных, ибо в них задействованы физические приборы, показания которых не зависят от свойств экспериментатора. Эти методы очень удобны при изучении различных явлений неживой природы. Однако сейчас все идет к тому, что главным объектом изучения станет человек. И тогда, надо полагать, традиционным объективным методам придется несколько потесниться в пользу подходов, которые можно условно назвать субъективными, к ним, в частности, относится и метод рамок.

Уже сейчас широко применяются устройства, в которых чувствительным датчиком служит какое-либо живое существо, например клоп, муха, голубь и т.д., но это лишь первые шаги. Ниже приводятся различные примеры субъективного подхода, которые, на мой взгляд, должны несколько поколебать традиционное к нему недоверие. В особенности этому должно способствовать сопоставление результатов, полученных с помощью субъективного и объективного подходов одновременно.





Возможность использования субъективных методов для изучения хронального явления представляет исключительную ценность для науки и практики, ибо при этом кардинально упрощаются все процедуры, а в качестве экспериментального оборудования служит несложная рамка, изготовленная из куска проволоки. Одновременно существенно расширяется круг проблем, которые удается успешно решить подобным субъективным способом, в частности, оказывается возможным найти многие интереснейшие свойства хрононов, не доступные пока для объективных методов исследований. Например, с помощью рамки легко определяется скорость хрононов, даже если она многократно превышает скорость света, и т.п. Чтобы убедиться в правильности полученных субъективным способом результатов, необходимо и достаточно повторить измерения с другими операторами. Очень хорошо, если опыты будут воспроизведены также в других лабораториях, городах, странах. После этого сомневаться в достоверности сделанных выводов уже невозможно. Не менее важно конструировать опыты таким образом, чтобы от рамки требовалось получить лишь ответ: "да" или "нет". Это практически устраняет субъективный элемент в измерениях, соответствующие примеры приводятся ниже [ТРП, стр.338-342].

8. Измерение хронального поля электронными приборами.

Электронные приборы относятся к категории объективных средств исследования. Поскольку хрональное явление определяет темп всех процессов, постольку устройства, предназначенные для измерения длительности (хода времени), могут быть непосредственно использованы для диагностики хронального поля. Например, к ним относятся электронные, радиоизотопные и механические часы, причем последние отличаются наименьшей точностью. Ниже описаны опыты с наручными электронными часами, с кварцевыми часами, встроенными в микрокалькуляторы, и т.д.

Хрональное поле влияет не только на процессы, но и на всевозможные свойства вещества; это может быть положено в основу создания необходимых измерительных приборов. В частности, под действием хронального поля существенно изменяется сопротивление вольфрама, в этом случае датчиком может служить отрезок вольфрамовой проволоки или даже миниатюрная вольфрамовая лампочка накаливания, а измерительным прибором - обычный омметр. Еще Н.А. Козырев в свое время наблюдал изменение сопротивления проводника под действием излучения, идущего от звезды Процион. Как видим, возможности приборной диагностики хронального явления чрезвычайно разнообразны.

Изменение под действием хронального поля темпа процессов, протекающих в полупроводниковых n-р-n (р-n-р) или МДП структурах, использовано при создании целой серии высокочувствительных датчиков. Такой датчик представляет собой кристалл размером 1,5х1,5 мм, на котором реализуется генератор прямоугольных импульсов. В частности, датчик ДГ-1 собран на микросхеме 4-2И-НЕ типа 531ЛАЗП (n-р-n). На двух элементах 2И-НЕ реализован генератор меандра с частотой 50 МГц, а два других элемента используются в качестве согласующего устройства. Стабилизация частоты осуществляется с помощью кварцевого резонатора, представляющего собой кварцевую пластинку диаметром 7 мм в герметическом стеклянном корпусе 10х10х3 мм. Второй датчик, генератор ДГ-2 частотой 45 МГц, также собран на микросхеме 531ЛА3П. На трех элементах 2И-НЕ реализован кольцевой генератор, а четвертый элемент 2И-НЕ используется в качестве согласующего устройства. Датчик ДГ-3 с частотой 4МГц собран на микросхеме 561ЛА7 (МДП) по тому же принципу, что и датчик ДГ-2 (рис. 12) [27, с.100]. Примеры практического применения описанных датчиков приводятся в параграфе 27 гл. XVIII и в других.

Интересно, что Н.А. Козырев тоже отмечал изменение частоты колебаний кварцевой пластинки под влиянием излучения звезды Процион.

В качестве хрональных датчиков можно использовать также и биообъекты - растения и животных - в сочетании с электроникой. Например, у С.Г. Смирнова датчиком служил небольшой кактус с двумя вмонтированными электродами (см. параграф 4 гл. XXVI). Богатейший арсенал биосредств использовал в своих опытах К. Бакстер (см. параграф 4 гл. XXVI) [ТРП, стр.342-343].