Добавить в цитаты Настройки чтения

Страница 66 из 150

 Мерой количества метрического вещества (пространства), или метрическим экстенсором, служит метриор  Емет . Метрические интенсиал, или метриал  Рмет , характеризует качество поведения метрического вещества. Согласно правилу (42), работа метрического вещества, равная изменению энергии системы, определяется по формуле

    dQмет = Рмет dЕмет = dU     (238)

Необходимо теперь вложить конкретный физический смысл в понятие метриора, а затем и метриала.

Поскольку главное специфическое свойство пространства – это протяженность и поскольку мы живем в трехмерном мире, постольку сразу же возникает идея о том, чтобы в качестве меры количества метрического вещества выбрать некий объем. Однако объем мы привыкли измерять с помощью линейного размера, взятого в третьей степени. Очевидно, сто такая сложная конструкция, не удовлетворяющая важнейшему требованию специфичности, не может служить экстенсором. Тем более что линейный размер – это экстенсор условно простого перемещательного явления, не обеспеченного своим специфическим веществом (см. параграф 5 гл. XV). Аналогично и сам объем выступает в роли экстенсора условно простого механического явления (см. параграф 4 гл. XV). О других, более существенных недостатках объема как экстенсора для истинно простого метрического явления говорится ниже. Следовательно, объем в обычном его понимании отпадает.

Для определения физического смысла метриора придется обратиться к третьему важнейшему специфическому свойству пространственного вещества, оно вытекает из второго, заключающегося в существовании порядка положения. Чтобы соблюдать порядок положения, тела должны перемещаться, двигаться, только таким способом они могут вытеснять друг друга со своих мест. Благодаря этому в рассмотрение естественно вовлекается классическая механика с ее обширным кругом блестяще отшлифованных понятий и законов. Среди этих понятий нас в первую очередь должно интересовать то, что является мерой количества вещества применительно к перемещению, движению. Известно, что такой мерой служит масса  m, измеряемая в килограммах.

Это понятие сложилось не сразу. Оно формировалось в течение нескольких поколений, начиная с Аристотеля и Герона и вплоть до Коперника, Гильберта, Кеплера. Непосредственные предшественники Ньютона (Декарт и Гюйгенс) еще путали понятия количества вещества и веса. Четко различил из Бальяни в 1638 г. Но дальше всех пошел Ньютон в своих "Началах", он массу определил как меру "количества материи" и успешно применил ее в своих законах механики [53, с.129].

 Масса хорошо описывает третье важнейшее свойство метрического вещества – перемещение, движение. Ниже мы убедимся, что она пригодна также для полного определения двух первых главных свойств этого вещества – протяженности и порядка положения. Масса удовлетворяет и требованию специфичности. Следовательно, ее вполне можно избрать на роль экстенсора истинно простого метрического явления. Разумеется, будучи мерой количества метрического вещества (метрической формы материи), масса не в состоянии охарактеризовать всю материю в целом, все ее разнородные формы.

Зная экстенсор (метриор), нетрудно по изложенным выше правилам найти сопряженный с ним интенсиал (метриал). Обозначим его через  ? , его размерность выражена в Дж/кг. В результате общая формула (238) приобретает следующий конкретный вид:

    dQm = ? dm = dU      (239)

Интересно, что в похожем виде работу и изменение энергии впервые записал У. Гиббс в 1874 г. применительно к химическим превращениям, не подозревая, что в действительности уравнение (239) имеет значительно более общее и важное значение, ибо определяет фундаментальное истинно простое метрическое явление. В условиях химических превращений используется аналогичная формула, но в ней так называемый химический потенциал  ?  имеет отличный от  ?  смысл (см. параграф 19 гл. XV).





Теперь нам предстоит углубить наше понимание величин  m  и  ?  и обсудить способы их измерения. Это будет сделано в настоящем и нескольких следующих параграфах. Начнем с выяснения смысла меры  m , заменив ее для наглядности более привычной нам характеристикой – объемом  ? , измеряемым в м3. Тогда сопряженный с этим новым условным экстенсором интенсиал  ?  будет иметь размерность давления (Н/м2). Условная подмена массы  m  на объем  ?  осуществляется таким образом, что

   m = k?       (240)

где  k  - коэффициент пропорциональности, величина которого зависит от единиц измерений. Этим мы как бы отождествляем массу  m  и объем  ? , что позволяет о массе применительно к пространству говорить на более понятном языке – в терминах объема. При этом формула (239) приобретает вид

    dQ? = ? d? = dU      (241)

 Здесь важно подчеркнуть, что объем  ?  ничего общего не имеет с упомянутым выше объемом  V , к которому мы привыкли. Чтобы во всем этом лучше разобраться, рассмотрим механизм процесса заряжания системы объемом  ? . Этот механизм представляет большой интерес, так как позволяет сделать много далеко идущих выводов и прогнозов.

 Согласно ОТ, пустоты в природе не существует. Все, в целом непрерывное, пространство образовано метрическим веществом, обладающим свойством протяженности и состоящим из большого множества отдельных его порций, или квантов (метриантов). Это вещество может находиться либо в состоянии парена – нулевой активности, когда давление  ? = 0, либо в активном, возбужденном состоянии, когда давление  ?  не равно нулю. В реальных условиях кванты активного пространства чередуются в каком-то порядке с квантами пассивного (парена). Поэтому если с помощью воображаемой контрольной поверхности мысленно выделить из окружающей среды некоторую систему объемом  V , то в нее одновременно попадут метрианты обоих типов. Активные метрианты в составе соответствующих ансамблей образуют изучаемое тело.

 На рис. 6 представлены два состояния системы, отмеченные индексами 1 и 2, причем активные метрианты изображены черными клеточками, а пассивные – светлыми. Под объемом  ? следует понимать только совокупность объемов активных метриантов (черных клеточек). Отсюда должно быть ясно, почему надо четко различать экстенсор  ?  и суммарный контрольный объем  V , а также почему объемом  ?  можно успешно подменять массу  m .

 Поскольку пространство непрерывно, постольку подвод к системе активных метриантов в количестве  d? = ?2 - ?1  (рис. 6, а и б) неизбежно должен сопровождаться вытеснением соответствующего количества метриантов парена (рис. 6, б, светлые клеточки). При этом концентрация активных метриантов  ?/V  возрастает, что приводит к повышению давления  ? . Увеличение давления есть следствие взаимодействия между сближающимися ансамблями системы. Аналогичная картина наблюдается при заряжании системы любым веществом, в этом отношении метрическое не является исключением из общего правила. Например, при подводе (увеличении) электрического заряда растет потенциал системы, при подводе термического вещества – температура и т.д. Специфическое отличие метрического явления от всех остальных заключается в том, что заряжание системы объемом происходит путем замещения пассивных квантов пространства активными. У всех остальных явлений при заряжании наблюдается простой подвод активных квантов вещества на общем фоне пространства, вложение ("вмазывание") этих квантов в кванты пространства.

 Посмотрим теперь, как описанный механизм выглядит применительно к поршневому двигателю. Предположим для этого, что имеется цилиндр с поршнем (рис. 6, в), заполненный газом. Под объемом  ?  будем, как и прежде, понимать совокупность активных метриантов газа, расположенных между некоторыми контрольными сечениями I и II , выделяющими в цилиндре из общего объема  V1  величину  V . Парен обладает всепроникающими свойствами, поэтому при движении поршня последний воздействует только на активные метрианты, число которых (концентрация) в контрольном объеме  V  увеличивается, а парен свободно проходит сквозь тело цилиндра и поршня (рис. 6, г). В результате газ сжимается от объема  V1  до объема  V2 , но при этом одновременно возрастает как объем  ? , так и давление  ? . При этом следует иметь в виду, что пассивных метриантов (парена) неизмеримо больше, чем активных.