Добавить в цитаты Настройки чтения

Страница 52 из 150

Нетрудно сообразить, что процессы поглощения термического вещества суть прямое следствие наличия универсального взаимодействия, без которого они были бы невозможны. Универсальное взаимодействие связывает между собой в ансамбле порции разнородных веществ. Именно поэтому некоторое данное вещество, распространяющееся под действием сопряженного с ним убывающего интенсиала, увлекает за собой остальные вещества, которые благодаря этому приобретают способность преодолевать возрастающие значения сопряженных с ними интенсиалов. Таким образом, утрачивает силу известная идея одностороннего развития мира, вытекающая из принципа возрастания энтропии во всех реальных процессах. Действительность такова, что процессы обратного направления - с убыванием энтропии - встречаются в природе столь же часто, как и прямого, - с возрастанием энтропии. Заботу об этом берут на себя закон экранирования, первое и второе начала ОТ и универсальное взаимодействие.

Работа  dQЭ , совершаемая переносимыми ансамблями, является термической работой, или теплотой. В термодинамике ее принято называть работой, или теплотой, трения. Для обозначения процессов выделения теплоты трения применяется также термин «диссипация», что означает рассеяние. Еще со времен Клаузиуса утвердилось представление о том, что теплота трения способна только выделяться, поэтому в реальных процессах вследствие выделения теплоты диссипации различные формы движения материи превращаются в теплоту, а последняя рассеивается в окружающей среде. Это и послужило основанием для принятия термина «диссипация».

Ранее закон (222) я тоже по инерции называл законом диссипации, хотя мне уже было известно, что мера количества термического вещества в противоположность энтропии способна не только возрастать, но и уменьшаться; об этом говорится, например, в книге [11, с.143], где термическое вещество именуется термическим зарядом. Наконец, в монографии [21, с.86] я окончательно перешел к новому термину «экранирование», который лучше отражает реальную действительность, чем прежний. Ведь фактически никакого рассеяния, обесценивания энергии в природе не происходит, так как экранированное термическое вещество способно не только выделяться, но и поглощаться: прежде чем выделиться, оно должно сначала где-то поглотиться в соответствующем процессе. Этим самым обеспечивается непрерывный и бесконечный круговорот энергии в природе.

Процессы прямого и обратного направлений можно трактовать как процессы плюс- и минус-трения, диссипации и минус-диссипации. Все это позволяет по-новому взглянуть на проблему обратимости и необратимости реальных процессов, возникшую на основе теории Клаузиуса, а также навести соответствующий порядок в имеющихся определениях, понятиях и терминах [18,20,21] [ТРП, стр.194-197].

 5. Седьмое начало ОТ, или обобщенный закон заряжания.

В ходе стыковки первого и второго начал ОТ с четырьмя остальными были сформулированы законы заряжания и экранирования. В результате для определения энергии мы располагаем уже тремя типами различных уравнений (31), (220) и (222). Требуется выяснить, не противоречат ли эти уравнения друг другу, не дублируют ли одно другое и как связаны между собой энергии  U ,  U3  и  UЭ .

Чтобы правильно ответить на эти и другие вопросы, попытаемся мысленно синтезировать нашу систему, последовательно заряжая ее различными чистыми веществами - не ансамблями, - начиная с нуля, то есть с единичного кванта какого-либо вещества. В данном случае контрольную поверхность по необходимости пронизывают все вещества, пошедшие на образование системы, включая термическое, которое частично расходуется на изменение теплового состояния, а частично экранируется, уже находясь внутри системы. Следовательно, в рассматриваемых условиях все вещества без исключения проигрывают на контрольной поверхности роль основных и поэтому в соответствии с уравнением (31) определяют полную энергию ансамбля  U , полное количество его поведения. Те вещества, которые продолжают выполнять эту роль внутри системы, дают энергию заряжания  U3 , определяемую уравнением (220) закона заряжания. Часть термического вещества, которая не участвует в заряжании, экранируется в системе, она дает энергию  UЭ , определяемую уравнением (222) закона экранирования. Такова субординация энергий U ,  U3  и  UЭ .

Не менее наглядно суть величин U ,  U3  и  UЭ  выступает, если происходит распад ансамблей на отдельные простые вещества. При этом система совершает работу, проталкивая через контрольную поверхность все свои вещества. Работа совершается в процессе силового поведения вещества, причем мерами качества поведения служат интенсиалы, являющиеся аналогами силы, а мерой количества поведения — энергия, равная работе и определяемая уравнением (31). При полном распаде высвобождается вся энергия ансамбля  U , соответствующая полному количеству его силового поведения. Из этого количества доля  U3  принадлежит веществам, участвовавшим в заряжании, а доля  UЭ  - термическому веществу, которое играло роль экранированного.

Следовательно, величина  U  состоит всего из двух частей: энергии заряжания  U3  и энергии экранирования  UЭ , то есть

U = U3 + UЭ        (224)





или в дифференциальной форме

dU = dU3 + dUЭ = dQ3 + dQЭ = ? dPdE – dPdE   (225)

Известное различие смысла слагаемых правой части этого уравнения делает нецелесообразным объединение их в одно слагаемое.

Если система располагает несколькими степенями свободы, то общее изменение энергии получается в виде соответствующей суммы, причем знак каждого из слагаемых определяется по правилам, изложенным выше применительно к уравнениям (220) и (222).

Дифференциальное уравнение (225) выражает седьмое начало ОТ. Оно определяет изменение энергии системы в виде суммы двух слагаемых, первое из них соответствует изменению энергии, обусловленному работами заряжания, а второе - работами экранирования.

Таким образом, седьмое начало ОТ объединяет законы заряжания и экранирования. При этом оба рассматриваемых процесса - заряжания и экранирования - сопровождаются подводом (или отводом) к системе определенных веществ. Следовательно, если отвлечься от того факта, что в первом случае вещество может быть любым, а во втором - только термическим, а также от некоторых других тонкостей этих процессов, тогда термин «заряжание» можно условно распространить и на экранирование. В результате седьмое начало ОТ приобретает смысл обобщенного закона заряжания.

Седьмое начало похоже на первое тем, что оба они определяют энергию системы. Однако между ними имеются и существенные различия. Первое начало выражает энергию через работы (34), которые совершаются на контрольной поверхности и представляют собой универсальные меры количества воздействия на систему со стороны окружающей среды. Иными словами, первое начало определяет энергию через внешние по отношению к системе характеристики. В противоположность этому седьмое начало определяет энергию через работы, которые выражаются с помощью внутренних характеристик системы (см. формулы (220) и (222)). Отсюда должно быть ясно, что первое и седьмое начала не противоречат и не дублируют, а дополняют друг друга.

Седьмое начало найдено в ходе взаимной припасовки шести предыдущих, без него совокупность начал оказывается незамкнутой, ибо в ней отсутствует самое важное, обобщающее, связующее звено, которое призвано объединить первые шесть начал в единое гармоничное целое. Кроме того, благодаря седьмому началу удается по-новому взглянуть на первое и обнаружить в нем определенные существенные недостатки. Вследствие этого седьмое приобретает не меньшую, если не большую, ценность для теории и практики, чем первое. Седьмое начало впервые было сформулировано в ОТ [29, с.6], оно особенно необходимо для целей переосмысливания прежней теории и получения на этой основе новых результатов, не доступных для традиционных представлений.

В свете изложенного становится ясно, что величины U ,  U3  и  UЭ  различаются между собой весьма существенно. Энергия  U  сохраняет за собой право именоваться универсальной мерой количества поведения, которым располагает ансамбль. Энергии  U3  и  UЭ  тоже являются мерами количества поведения, но каждая из них характеризует только ограниченные частные свойства ансамбля, связанные с эффектами заряжания и экранирования, на частный характер этих энергий указывают индексы «З» и «Э».