Добавить в цитаты Настройки чтения

Страница 64 из 131

*Большой Взрыв - соответствует английскому Big Bang,

** Это обстоятельство, наряду с бесконечностью при t = 0 ряда метрических величин, и связано с представлением о физической сингулярности, то есть физически значимой особенности (разрыве) в решениях космологических уравнений.

ДВУХМЕРНЫЙ АНАЛОГ КАРТИНЫ РАСШИРЕНИЯ ВСЕЛЕННОЙ (В ЗАМКНУТОЙ МОДЕЛИ).

ВСЕ ТОЧКИ ЗАШТРИХОВАННОЙ ОБЛАСТИ, ОГРАНИЧЕННОЙ ГОРИЗОНТОМ, МОГУТ БЫТЬ

СВЯЗАНЫ С НАБЛЮДАТЕЛЕМ А СВЕТОВЫМИ СИГНАЛАМИ.

То, что происходило до Сингулярности, непосредственно в ней и примерно вплоть до 10-7-10-5 с, относится - точнее, до недавних пор относилось! - к области более или менее свободного полета мысли. По истечении одной десятимиллионной доли секунды можно рисовать довольно конкретные картинки. Вещество очень высокой плотности находится в состоянии весьма горячего (Т ~ 1014 К) "супа" из кварков, лептонов и фотонов, которые движутся как частицы идеального газа со световыми скоростями.

Когда температура падает до 1012К (t ~10-5 с), плотность вещества становится порядка той, которая характерна для атомных ядер и адронов. Вероятно, где-то на этом этапе и протекает образование адронов - кварки отходят друг от друга на предельно большие средние расстояния и поневоле сливаются в адронные структуры.

Начиная с этого момента, можно определенно говорить о горячей смеси адронов, лептонов и фотонов, причем последние довольно долгое время играют основную роль.

Через 200 секунд после Первовзрыва температура падает до миллиарда градусов, средняя кинетическая энергия частиц уже невелика - ее не хватает для рождения лептонных пар, а тем более адронов. Теперь протоны и нейтроны могут объединяться в простейшие составные ядра дейтерия, не рискуя немедленно развалиться в слишком горячей среде. Начинается эра нуклеосинтеза.

Дейтерий сам по себе очень нестабилен, но в результате столкновений с протонами и нейтронами он может превращаться в гелий-3 или в тритий. В свою очередь, гелий-3 подбирает нейтрон, а тритий - протон, образуя весьма стабильные ядра обычного гелия-4. За несколько последующих минут практически все нейтроны расходуются на гелиосинтез или распадаются (бета-распад: n ( p + e-+ ?). Завершается аннигиляция античастиц.

Более тяжелые ядра образоваться попросту не успевают. Это связано со "щелями" в Периодической системе элементов Менделеева - отсутствием стабильных ядер с 5 или 8 нуклонами. Иными словами, присоединение к гелию протона или нейтрона или слияние двух ядер гелия не ведут к усложнению ядерной структуры.

Следующий структурный уровень появляется много позже - примерно через 700 тысяч лет после Первовзрыва. Температура падает настолько, что возможен синтез атомов водорода и гелия из соответствующих ядер и электронов. Фотоны уже не настолько энергичны, чтобы легко выбивать связанные электроны.

Так разрывается связь между первичным излучением и веществом. У фотонов просто не хватает энергии на ионизацию атомов, с электрически же нейтральными объектами они не взаимодействуют. Поэтому фотоны начинают распространяться практически свободно - Вселенная становится как бы прозрачной для них.

Отсюда и берет начало так называемая эра доминирования вещества, которое пока выглядит как примитивная смесь водорода и гелия в пропорции примерно 7 : 3. Первичное фотонное и, видимо, нейтринное излучения, постепенно охлаждаясь, превращаются в реликты - живые памятники великим событиям первых мгновений.





Наступающую эру можно также назвать и космогонической - именно теперь гравитация формирует галактики и звезды.

Но перед обращением к этой очень интересной фазе стоило бы обсудить кое-какие космологические и околокосмологические проблемы.

ЧТО ОЖИДАЕТ ВСЕЛЕННУЮ?

Всякая космологическая теория пытается увязать самые общие свойства распределения материи в сегодняшней Вселенной с картиной, соответствующей наиболее ранним эпохам, но непременно заглядывает и в далекое будущее. Что касается будущего, стандартная модель предлагает на выбор два варианта замкнутый и открытый.

Замкнутая Вселенная похожа на поверхность расширяющегося воздушного шарика, но, разумеется, это лишь двухмерная аналогия. Со временем такая Вселенная должна достичь максимального размера, после чего она будет сжиматься. Для наблюдателя это выглядело бы как постепенное исчезновение красных смещений в спектрах галактик. В какой-то момент они сменились бы постепенно усиливающимися фиолетовыми смещениями.

Температура Вселенной начинает возрастать, что неизбежно ведет к распаду структур - от живых организмов до галактик. Разогревшееся реликтовое излучение вступит во взаимодействие с веществом, обдирая электронные оболочки атомов, распадутся атомные ядра, снова образуется горячая смесь из электронов, фотонов, нейтрино и протонов, появится заметное количество античастиц, потом фотон-лептон-кварковый бульон, и, наконец, за миллионную долю секунды Вселенная уйдет в Сингулярность*.

*В англо-американской литературе этот уход иногда образно именуется Big Crunch - что-то вроде Большого Краха или Большого Треска.

Другой вариант - безграничное расширение Вселенной, когда она будет все более и более остывать, стремясь превратиться в холодное море фотонов и нейтрино с небольшой примесью других частиц. Видимо, сколь-нибудь сложная организация материи должна исчезнуть, и единственной отрадой в этой картине является то, что переход в состояние полного вымораживания будет длиться довольно долго: по разным оценкам от 1030 до 1070 лет.

Выбор между двумя вариантами будущего сводится к оценке современной плотности вещества, вернее, соотношения этой величины с так называемой критической плотностью ( кр = 3H2/8?G ( 4,7.10-30 г/см3 (при Н = 50км/сМпс =1,62.10-18 с-1)*. Если ( > ( кр, то имеет место первый вариант, и расширение неизбежно сменится сжатием. Если то ( ( кр, расширение будет неограниченным.

* Более осторожные современные оценки для Хаббловской функции: Н = 55?75 км/сМпс, что дает несколько большую критическую плотность: ( кр = (0,6?1).10-29 г/см3.

Для пояснения разницы можно использовать аналогию со снарядом, запущенным с Земли. Если начальная скорость не очень велика (не достигает второй космической скорости), то кинетической энергии снаряда не хватит на преодоление тяготения, и он упадет назад или превратится в искусственный спутник. Наоборот, при достаточно большой скорости он будет (без учета влияния других тел Солнечной системы) неограниченно удаляться от Земли. При использовании этой аналогии важно только помнить, что разбегание галактик связано с расширением самого пространства, тогда как "разбегание снаряда и Земли" рассматривается в обычном Ньютоновом пространстве...

Сделать окончательный выбор между двумя вариантами горячего или холодного будущего очень трудно - точность измерения Н и, следовательно, ( кр невелика. Но еще сложней оценить наблюдаемую плотность. Совсем еще недавно данные сводились к ( совр. ~ (2?5).10-31 г/см3, то есть Вселенная скорее соответствовала открытой модели. Однако эта плотность оценивалась преимущественно по запасам звездного вещества в галактиках. Считалось, что реликтовый фон фотонов и нейтрино дает вклад в плотность массы на 3 порядка меньше, и этим вкладом фактически можно пренебречь.

С открытием массы нейтрино ситуация может резко измениться. Если число нейтрино, приходящихся на один протон, сохранится на уровне одного миллиарда, то окажется, что в современную эпоху именно нейтрино дают основной вклад в массу Вселенной, и наблюдаемая плотность подскочит до критической черты*. С другой стороны, немалая доля массы должна быть сосредоточена в темных объектах - выгоревших звездах. Особые надежды возлагаются на черные дыры, которыми могли завершить свой путь многие звезды первого поколения. Систематическое обнаружение такого рода объектов опять-таки позволило бы поднять оценку наблюдаемой плотности. Но, как мы видели в главе 6, независимо от природы скрытой от наблюдения массы, ее уже обнаружили, и ее плотность, скорее всего, в десятки раз превышает ( совр.