Добавить в цитаты Настройки чтения

Страница 52 из 131

Для класса G характерны, например, сильно выраженные спектральные линии кальция и сравнительно ослабляющиеся при переходе от G0 к G9 линии водорода. Поэтому, зарегистрировав эти особенности в спектре какой-то звезды, мы можем полагать, что она довольно близка по свойствам к Солнцу.

Важную роль сыграла цветовая классификация, поскольку звезды по-разному излучают в различных диапазонах длин волн. Цвет можно довольно точно задавать количественно, применяя соответствующие оптические фильтры. Видимые звездные величины дополнительно различают по тому, сквозь какой фильтр они наблюдаются. Соответствующие индексы: R (красный), V (желтый, или визуальный, в основном соответствующий восприятию нормальным человеческим глазом), pg (фотографический, соответствующий данным на фотопластинках), В (голубой), U (ультрафиолетовый) присоединяются к указанию видимой или абсолютной звездной величины. Численная оценка показателя цвета делается по разности величин звезды, полученных в голубом и желтом фильтрах (так называемый B-V показатель). Это позволяет довольно точно включить звезду в один из спектральных классов.

Спектральные исследования открыли путь к определению эффективной температуры звездных поверхностей, точнее, верхних слоев звездной атмосферы. Оказалось, что спектральные классы содержат и своеобразную температурную классификацию звезд. Самые горячие - звезды класса О имеют поверхностные температуры порядка 30-40 тыс. градусов, самые холодные относятся к классу М, и их температура заключена в интервале 2,5-4 тыс. градусов.

Эта связь оказалась далеко не единственной. Вдоль последовательности спектральных классов - от М к А - возрастают массы, радиусы и светимости звезд. Это обстоятельство довольно легко усмотреть из диаграмм, где по оси абсцисс отложены спектральные классы (обычно от А до М) или показатели цвета, а по оси ординат - интересующая нас величина, например, масса или светимость.

Видимо, впервые использовал такую возможность датский астроном Эйнар Герцшпрунг (1873-1967), установивший в 1905 году зависимость между абсолютной звездной величиной и спектральным классом. Очень важный результат Герцшпрунга - разделение звезд по классам светимости на карликов и гигантов. Дело в том, что звезды одного и того же спектрального класса могут обладать чрезвычайно различной (в тысячи раз!) светимостью. При одинаковой температуре поверхности объяснить это можно только очень большим различием в радиусах. Предварительный отсев особо крупных и очень малых звезд позволил увидеть довольно четкую зависимость для обычного звездного населения*. Идея Герцшпрунга была развита директором обсерватории Принстонского университета в США Генри Норрисом Ресселом (1877 -1957), который тщательно проанализировал диаграмму "спектр - абсолютная звездная величина", впоследствии названную диаграммой Герцшпрунга - Рессела.

* Обычное звездное население - это звезды так называемой главной последовательности. Ныне выделяется 7 классов светимости звезд. В I входят звезды-сверхгиганты, во II - яркие гиганты, в III - гиганты, в IV субгиганты, в V - звезды главной последовательности и карлики, в VI субкарлики и в VII - белые карлики. Иногда I класс светимости разбивают на два подкласса 1а (яркие сверхгиганты) и I (сверхгиганты).

Положение звезды на диаграмме такого типа оказалось не просто наглядной и удобной формой записи информации о ее состоянии. Рессел догадался, что перед ним какая-то эволюционная последовательность. Звезда, сжимаясь под действием гравитации, разогревается, путешествуя по верхнему краю диаграммы от области красных гигантов до класса О главной последовательности. Затем она спускается в диагональном направлении по главной последовательности, проходя фазу, в которой находится сейчас желтый карлик - Солнце, фазу красных карликов и, наконец, превращается в невидимый выгоревший объект. Такова была одна из первых попыток создать модель звездной эволюции. Для ее успеха не хватало еще многих данных, необходимых представлений об энергетических запасах звезд.

ДИАГРАММА ГЕРЦШПРУНГА - РЕССЕЛА

В 19 веке был найден правильный ответ на вопрос о поджигающем механизме. Им оказалось гравитационное сжатие звезды. Но что и как горит? Почему звезда светит так долго?

Обычные химические реакции не позволяли дать разумных оценок звездного возраста. И только прорыв физики в область атомных ядер открыл дорогу новым идеям звездной энергетики.





Источником долгожительства ярких звезд оказались термоядерные реакции, в которых достаточно медленно синтезируются все более тяжелые элементы при колоссальном выделении энергии. Анализ этих реакций и привел к современной картине звездной эволюции, которую мы обсудим во II части книги.

ЗВЕЗДНАЯ ЭКЗОТИКА

Однако открытием и классификацией более или менее обычного звездного населения дело не ограничилось. Уже в период зарождения эволюционной картины космоса - где-то во времена Лапласа проскальзывали идеи о небесных телах, непохожих на известные планеты и звезды. Ведь если звезды рождаются и умирают, их начальные и конечные состояния должны весьма отличаться от Солнца.

Первый шаг в этом направлении был сделан Фридрихом Бесселем, который в 1844 году провел тонкий анализ положений Сириуса и установил, что эта звезда связана с каким-то невидимым спутником. Картина выглядела так, что яркий Сириус А вместе с довольно массивным Сириусом В образуют двойную систему, обращающуюся вокруг общего центра тяжести с периодом порядка 50 лет. Масса спутника примерно равна массе Солнца, и поэтому его нельзя было считать планетой - скорее, речь шла о погасшей звезде. В 1862 году американскому астроному Олвину Грэхэму Кларку (1832-1897) удалось разрешить двойную систему Сириуса. Оказалось, что Сириус В - звездочка примерно 7 величины*, но ее цвет вовсе не свидетельствовал об угасании. Имея светимость почти в 100 раз меньше солнечной, эта звезда была раскалена добела, вместо того чтобы демонстрировать положенный темно-красный оттенок. В 1914 году американец Уолтер Сидней Адаме (1876-1956) проанализировал спектральный портрет звездной пары, и стало ясно, что обе звезды - А и В принадлежат к одному спектральному классу А, а их поверхностная температура порядка 10 000 К. Так состоялось открытие белых карликов.

*Двойная система Сириуса находится в созвездии Большого Пса на расстоянии 2,7 пс от Солнечной системы. Сириус А (? Большого Пса) примерно в 104 ярче Сириуса В.

Необычность Сириуса В заключалась в его малых размерах. Только очень малой площадью поверхности можно было объяснить столь малую светимость при температуре, почти в 2 раза превышающей температуру поверхности Солнца. Но отсюда следовало, что плотность белого карлика очень велика - примерно в 100 000 раз больше средней плотности нашего центрального светила.

Объекты такого рода с довольно разными массами и радиусами, но очень высокими плотностями порядка 104-106 г/см3 были обнаружены во множестве. А бурное развитие атомной физики в 10- 20-х годах позволило объяснить их существование вполне естественным образом.

Оказалось, что вещество, из которого состоит белый карлик, находится в необычном состоянии. Грубо говоря, для нормальной плотной упаковки атомов массой 10-24 г и размером 10-8 см характерна плотность порядка 10-24/(10-8)3 =1 г/см3 . При достаточно большом давлении, возникающем при сжатии звезды, атомная структура разрушается, электроны образуют особый так называемый вырожденный газ. Характерным размером теперь уже является не радиус электронной орбиты, а квантовый (комптоновский) радиус электрона ((e = h /meс = 3,86.10-11 см). Получается картина, в которой плотно упакованы уже не атомы, а электроны, а ядра (например, протоны) как бы вжаты в электронный объем. Отсюда и характерная плотность белых карликов: ( ~ 10-24/(4.10-11)3 ~107 г/см3. Более точные оценки дают несколько меньшую величину, но в целом ситуация именно такова. Этим достижения астрономов и физиков не ограничились. Открытие в 1932 году нейтрона и немедленно последовавшее создание модели атомного ядра (микрообъекта, состоящего из компактно упакованных протонов и нейтронов) открыло путь к анализу еще более концентрированного звездного вещества. В самом деле, не может ли звезда при гораздо больших давлениях переходить в фазу гигантского атомного ядра с плотной упаковкой ядерных частиц?