Добавить в цитаты Настройки чтения

Страница 124 из 131

2. ВЗАИМОДЕЙСТВИЯ

Современная теория рассматривает три типа фундаментальных сил, на основе которых объясняется строение и эволюция вещества.

Электрослабые взаимодействия. До недавних пор мы знали о двух различных силах природы - электромагнитных и слабых. Первая из них ответственна, например, за строение атомов и излучение фотонов, а вторая за ?-распад (n ( p + e-+?e)и другие процессы такого типа. Интенсивная работа физиков в 60-70-х годах привела к построению единой теории электрослабого взаимодействия. Объединение выглядит особенно естественно, если вспомнить, что еще в середине прошлого века электрические и магнитные явления связывались с различными силами природы, и общая теория электромагнетизма лишь постепенно формировалась в трудах Фарадея и Максвелла. Теперь же оказалось, что слабые силы - своеобразное проявление электромагнетизма на очень малых расстояниях (порядка 10-16 см). Одно из фундаментальных полей - электромагнитное - мы знали давно и даже научились использовать, а три других, соответствующих излучению промежуточных бозонов W+- и Z0, заметили сравнительно недавно в связи с процессами слабых распадов.

Таким образом, современная картина электрослабого взаимодействия основывается на четырех фундаментальных бозонных полях и включает в себя поля лептонов и кварков. Элементарный акт взаимодействия между лептонами и (или) кварками выглядит как обмен одним из бозонов. Такой механизм лежит в основе ныне общепринятой схемы описания актов рассеяния и распадов элементарных частиц - квантовой теории поля. Эта схема, хорошо отработанная в области квантовой электродинамики и ныне успешно включившая в себя описание слабых процессов, считается своеобразной нормой теории фактически той линзой, сквозь которую физики пытаются рассмотреть самые глубокие закономерности микромира.

Сильные взаимодействия. Вступая в область адронов, мы сразу сталкиваемся с проблемами двух уровней - исследованием межкварковых и межадронных сил. Вообще-то соответствующая теория - квантовая хромодинамика (цветодинамика), построенная по образцу электрослабой модели, стремится развить схему, где все процессы хорошо описывались бы взаимодействиями 5 или 6 кварковых и 8 глюонных полей. Межадронные силы должны выводиться из более фундаментальных межкварковых, и все свойства белых адронов следовать из модели цветных кварков и глюонов.

Такой подход многое позволяет сделать, но, к сожалению, далеко не все. Аналогии с предыдущими структурными уровнями - атомномолекулярным и ядерным - довольно быстро выходят из строя при попытках описать адрон в целом, а не только валентные кварки. Суть трудностей весьма грубо можно свести к тому, что при описании адрона (его рождения, гибели, взаимодействия как целого) фактически приходится привлекать картину с очень большим (даже бесконечным) числом кварков и глюонов, причем многочастичные состояния играют принципиальную роль, и не удается ограничиться решением простых двух- или трехчастичных задач.

Эта ситуация очень наглядно проявляется в процессах множественного рождения адронов при высоких энергиях. В актах соударения рождение какого-то количества новых адронов примерно в 4 раза более вероятно, чем упругое рассеяние исходных адронов. Поэтому двухчастичная задача о межадронных взаимодействиях оказывается резко незамкнутой, и, судя по всему, ее не удается свести к рассмотрению парных взаимодействий не только на адронном, но и на кварк-глюонном уровне.

Адрон - неточечная частица, и его рождение нельзя описать как мгновенный акт, происходящий в единственной точке пространства. Скорее речь идет о довольно сложной пространственно-временной эволюции в областях с размером порядка 10-13 см и временных интервалах порядка 10-23 с, когда в начале имеется своеобразный адронный ген (скажем, кварк-антикварковая пара), а в конце - вполне сформировавшийся адрон (скажем, ?-мезон с нормальной виртуальной шубой).





Самое любопытное в множественном рождении - коллективный характер формирования шуб у отдельных частиц. Экспериментально это проявляется в том, что большинство образующихся адронов сильно коррелированны друг с другом, словно их появление взаимообусловлено, и они "помнят" о своем происхождении из единого котла. Можно надеяться, что в структуре рождающихся таким образом адронов запечатан их генезис в области взаимодействия - от кварк-партонного зародыша до полноценной частицы. Но квантовая хромодинамика пока не способна восстановить многие важные детали этой картины (и, между прочим, не объясняет сильных корреляций). Эволюция комка кварк-глюонного вещества и формирование в нем сложных адронных структур - те задачи, которые могут потребовать серьезных преобразований всей квантовополевой схемы фундаментальных взаимодействий.

Гравитация. О гравитационном взаимодействии элементарных частиц мы знаем удивительно мало. По сути, проявления силы тяготения непосредственно между парой частиц, например, протонов, никогда не наблюдались. Беда в том, что из-за фантастической малости гравитационной константы связи (?гр = Gmp2/ hc ( 5,9.10-39 эти силы в любом столкновении частиц легко забиваются другими более интенсивными взаимодействиями. Но такое положение не должно казаться непреодолимым барьером в изучении гравитационных задач микромира. Строго говоря, гравитационный заряд пропорционален не массе покоя частицы, а ее полной энергии, так что при столкновении планковских пучков (Е ~ ЕP ~ 1028 эВ) гравитация должна стать сильным взаимодействием.

На сегодняшний день известно, что такие элементарные частицы, как фотоны и нейтроны, ведут себя в поле крупных космических тел вполне удовлетворительно, то есть отклоняются в соответствии с предсказаниями классической теории тяготения. Астрофизические модели дают хорошие косвенные свидетельства того, что поведение других частиц тоже не противоречит выводам классической теории.

По сути же, современная теория гравитации относится к макроскопическим телам, системам огромного числа элементарных частиц (в типичной звезде порядка N ~ (mP/mp)3 ~ 7,8.1056 нуклонов). С ньютоновских времен и до первых десятилетий 20 века тяготение рассматривалось как одна из фундаментальных сил природы, и ее особая роль по сравнению, скажем, с кулоновской силой сводилась к простому различию: первая действует между всеми массивными телами, а вторая только между электрически заряженными.

Развитие эйнштейновской теории относительности продемонстрировало глубокую эквивалентность между массой и энергией, стало ясно, что гравитация - универсальное явление, в гравитационных взаимодействиях должны участвовать все виды материи, обладающие энергией и импульсом. В 1916 году Альберт Эйнштейн сформулировал изумительно красивую гипотезу о том, что ввиду универсальности гравитации имеет смысл рассматривать движение материи не в особом силовом поле, а в неевклидовом пространстве-времени, геометрические свойства которого целиком определяются состоянием свободно движущейся материи.

В обычном евклидовом пространстве свободная частица всегда движется по прямой с постоянной скоростью или покоится. В случае более сложной геометрии свободному движению (или, как говорят, движению по геодезической) могут соответствовать очень сложные траектории. Тяготеющий центр может искривлять пространство, обеспечивая, например, эллиптическое движение частицы, и при достаточно больших расстояниях (r " 2GM/c2) и малых скоростях (v " c) картина будет соответствовать движению планеты в поле ньютоновского силового центра.

Эйнштейновская теория гравитации (часто называемая общей теорией относительности) получила хорошие экспериментальные подтверждения и составила основу современной космологии и релятивистской астрофизики. Но она соответствует усредненному описанию вещества, и ее экстраполяции на уровень квантовомеханических систем отнюдь не проста. К сожалению, нашему эксперименту пока не доступны объекты, которые могли бы сыграть роль мостика между классической и квантовой гравитацией - нечто вроде атома водорода в электродинамике. Тем более трудно пока обсуждать микроскопическую модель гравитационного взаимодействия - будет ли она соответствовать современному квантовополевому идеалу (обмен гравитонами и т. п.) или потребует чего-то необычного.