Добавить в цитаты Настройки чтения

Страница 5 из 15

Проведение технологических экспериментов было включено также в программу исследований на советской космической станции «Салют-5». С этой целью был разработан специальный комплект приборов — «Кристалл», «Диффузия», «Поток», «Сфера», «Реакция» (рис. 6), предназначенный для исследования широкого круга вопросов в области наук о веществе в космосе, а также для отработки методов пайки в космических условиях.

Технологические эксперименты с этими приборам были успешно выполнены в июле — августе 1976 г. летчиками-космонавтами СССР Б. В. Вольтовым и В. М. Жолобовым и в феврале 1977 г. — В. В. Горбатко Ю. Н. Глазковым.

Наряду с исследованиями, проводившимися на борту пилотируемых космических станций и кораблей, как в Советском Союзе, так и в США технологические эксперименты осуществлялись в автоматическом режиме при запусках высотных ракет.

Отличительная черта этих экспериментов — сравнительно ограниченная продолжительность состояния невесомости (5–7 мин на американских ракетах, около 10 мин — на советских). Поэтому для проведения таких экспериментов в Советском Союзе разработаны установки, в которых для плавления образцов используется тепло экзотермических реакций.

На американских высотных ракетах применяется электронагревательная ампульная печь, которая не может обеспечить столь же быстрого разогрева заготовок и которую поэтому приходится включать заблаговременно, до старта ракеты.

Исследования на высотных ракетах позволяют выполнять космические эксперименты более оперативно и на более простом оборудовании, и поэтому их следует рассматривать как полезное дополнение к работам на космических станциях и кораблях.

Рис. 6. Приборы для проведения технологических экспериментов на станции «Салют-5» (а — прибор «Кристалл»; б — прибор «Реакция»)

Космические аппараты и технологические модули. Перспектива развития работ в области технологии обработки материалов в космосе состоит в том, что от экспериментальных исследований будет осуществлен постепенный переход к полупромышленному производству на борту КА некоторых материалов, а затем и к производству в промышленном масштабе. Согласно зарубежным оценкам, можно ожидать, что к 1990 г. грузопоток продукции космического производства, а также необходимого оборудования достигнет нескольких десятков тонн в год.

Создание в СССР долговременной орбитальной станции «Салют» и экономичной системы ее транспортного обеспечения с помощью пилотируемых кораблей «Союз» и автоматических кораблей «Прогресс» открывает новые большие возможности для проведения технологических экспериментов, отработки необходимого оборудования, а также анализа технологических процессов в условиях длительной невесомости.

Разработка и совершенствование орбитальных пилотируемых комплексов, предназначенных для решения задач научного и прикладного характера, как известно, является магистральным направлением развития отечественной космонавтики. Одна из основных задач связана при этом с развитием наук о поведении вещества в условиях невесомости и с обеспечением потребностей производства материалов в космосе.

В рамках этой программы в Советском Союзе был осуществлен самый длительный в истории космонавтики полет орбитального научно-исследовательского комплекса «Салют-6» — «Союз», продолжавшийся 96 суток и успешно завершенный 16 марта 1978 г. На борту этого комплекса летчики-космонавты СССР Ю. В. Романенко, Г. М. Гречко, А. А. Губарев и летчик-космонавт ЧССР В. Ремек осуществили новые важные технологические эксперименты.

В дальнейшем, по мере возрастания грузопотоков, средства снабжения орбитальных научных комплексов будут совершенствоваться. Появятся новые грузовые корабли для доставки оборудования, приборов и заготовок из различных материалов на борт орбитальных комплексов. Изделия и материалы, полученные в космосе, будут доставляться в космос и возвращаться на Землю с помощью (многоразовых космических кораблей. В состав орбитальных комплексов будут входить специализированные технологические модули.

Некоторые технологические операции в космосе, например получение материалов сверхвысокой чистоты, требуют обеспечения глубокого вакуума. С этой целью в сочетании с ДОС можно использовать так называемый молекулярный экран, который с помощью специальной штанги размещается на расстоянии около 100 м от корабля. Диаметр экрана — 3 м.





Поскольку скорости теплового движения молекул остаточного газа меньше скорости поступательного движения корабля вместе с экраном по орбите (8 км/с), за экраном возникнет зона повышенного разрежения. Давление остаточного газа в этой зоне будет порядка 10–13 — 10–14 мм рт. ст.

Разработка транспортных космических кораблей, способных обеспечить экономически эффективные транспортные перевозки, создание долговременных орбитальных станций типа советских космических станций «Салют» открывают дорогу к сооружению в космосе действующих фабрик по производству истых материалов.

По мнению специалистов, подобные космические фабрики начнут действовать уже в 1990-х годах.

Исследование физических основ космического производства

Процессы тепло- и массопереноса. Выяснение особенностей процессов переноса тепла и массы в условиях, близких к невесомости, необходимо для оптимальной организации производства в космосе новых материалов. С целью изучения этих особенностей проводятся как теоретические, так: и экспериментальные исследования.

Один из таких экспериментов был выполнен на космической станции «Салют-5» космонавтами В. В. Горбатко и Ю. Н. Глазковым в феврале 1977 г. Целью этого эксперимента было исследование процесса взаимодиффузии расплавленных веществ в условиях, близких к невесомости.

Эти исследования на станции «Салют-5» проводились с помощью специального прибора «Диффузия» — Прибор представлял собой цилиндрическую электронагревную печь, содержащую внутри две кварцевые ампулы, каждая из которых была частично заполнена дибензилом, а частично — толаном. Эти органические вещества обладают различной плотностью и при комнатной температуре находятся в кристаллическом состоянии. Ампулы в цилиндрической электронагревной печи располагались таким образом, что небольшая массовая сила, возникавшая из-за аэродинамического торможения станции, была направлена вдоль их оси.

После включения прибора оба вещества расплавились, и в течение трех суток продолжался процесс их взаимодиффузии через границу раздела расплавов. Температура по длине ампул поддерживалась постоянной. После отключения прибора происходило охлаждение и затвердевание сплава, структура которого имела поликристаллический характер.

Для сравнения результатов космического эксперимента с теорией с помощью ЭВМ был выполнен расчет процесса переноса массы для условий, соответствующих эксперименту с прибором «Диффузия». Расчет показал, что поскольку температура по длине ампулы оставалась постоянной в ходе эксперимента, тепловая конвекция должна отсутствовать, а возникающая на границе раздела жидкостей концентрационная конвекция[3] оказывала заметное влияние на перенос массы лишь на начальном этапе эксперимента. Иными словами, согласно проведенным расчетам, основной вклад в перенос массы в исследованных условиях должны были дать чисто диффузионные процессы.

После проведения эксперимента и возвращения космонавтов на Землю доставленные из космоса ампулы были тщательно изучены в лаборатории. Исследования распределения вещества по длине ампулы позволили определить значение коэффициента диффузии. Для сравнения на Земле были выполнены контрольные опыты с такими же ампулами. Оказалось, что величина коэффициента диффузии, определенная в космических условиях для сплава дибензила с толаном, близка к теоретическому знанию (около 9,5 · 10–6 см/с2) и несколько превосходит величину, полученную в контрольных опытах на Земле, но это расхождение находится в пределах ошибки метода. Следует отметить также, что на Земле отсутствует возможность точно воспроизвести характер тех микроускорений, которые воздействовали на расплав в космосе.

3

Концентрационная конвекция, в отличие от тепловой, обусловлена не перепадом температур, а перепадом концентрации в объеме.