Добавить в цитаты Настройки чтения

Страница 3 из 15

Если изменение концентрации частиц одного сорта на расстоянии Δx внутри жидкости равно Δс, то через единичную площадку в 1 с должно проходить число частиц I = — DΔc/Δx.

Жидкость может содержать несколько компонентов одновременно. Если содержание одного из компонентов мало, то такой компонент рассматривают как примесь. Если в начальный момент примесь распределена в жидкости неравномерно, то диффузионные процессы в жидкости ведут к установлению однородного распределения (гомогенизация).

В некоторых случаях жидкость может содержать компоненты разной плотности. На Земле под действием силы Архимеда постепенно происходит разделение этих компонентов (например, из молока образуются сливки и обрат). В невесомости этого разделения нет, и после затвердевания таких жидкостей могут быть получены вещества с уникальными свойствами. Жидкость может также содержать фазы, которые не смешиваются между собой, например, керосин и воду. На Земле между ними образуются четкие границы раздела. В невесомости путем перемешивания можно получить устойчивую смесь, состоящую из мелких капель той и другой фаз. После затвердевания из подобных смесей разных фаз можно получить однородные композиционные материалы, пенометаллы и т. п.

Возникновение границ раздела между различными фазами в жидкости связано с наличием силы поверхностного натяжения, или капиллярной силы, которая возникает из-за взаимодействия между молекулами жидкости. Поверхностное натяжение можно уподобить силе, которая возвращает в исходное состояние струну, когда музыкант пробует оттянуть ее в сторону. Именно сила поверхностного натяжения приводит к тому, что из плохо закрытого крана падают капли, а не льется тоненькая струйка воды. Но на Земле эти капли невелики: сила тяжести много больше сил поверхностного натяжения и разрывает на части слишком крупные из них. В невесомости ничто не может препятствовать образованию весьма крупных капель, и жидкое тело, предоставленное само себе, будет принимать сферическую форму.

В действительности на борту космического аппарата из-за различного рода малых ускорений состояние невесомости нарушается. Если r — радиус сферы, форму которой принимает жидкость, то действующая на нее капиллярная сила приблизительно равна σr, где σ — коэффициент поверхностного натяжения. Величина инерционных массовых сил, действующих на жидкость, равна ρgr3, где ρ — плотность жидкости, g — малое ускорение. Очевидно, эффекты поверхностного натяжения будут играть главную роль, когда σ · (ρgr2)–1 > 1. Этим условием определяется возможность получения в состоянии, близком к невесомости, жидких сфер с радиусом r. Такие жидкие сферы на борту космических аппаратов могут находиться в свободно плавающем состоянии, когда для их удержания не нужны сосуды. Если это жидкий расплав, то при его затвердевании на Земле со стенок сосуда поступают вредные примеси. В космосе можно обойтись без сосуда и, следовательно, получать более чистые вещества.

Тепло- и массообмен в невесомости. Существенное влияние переход к невесомости оказывает также на процессы тепло- и массобмена в жидкостях и газах. Перенос тепла может осуществляться теплопроводностью, конвекцией или излучением, а также любым сочетанием этих механизмов. Теплопроводность — это процесс переноса тепла из зоны с более высокой температурой в зону, где температура ниже, путем диффузии молекул среды между этими зонами. По этой причине коэффициент теплопроводности пропорционален коэффициенту диффузии.

Теплообмен излучением характерен главным образом для твердых и жидких тел и происходит при достаточно высоких температурах. Процессы лучистого теплообмена и теплопроводности не зависят ни от силы тяжести, ни от малых массовых сил, действующих на борту космических аппаратов.

Иное дело конвективный теплообмен. Конвекция — это перенос тепла в жидкой или газообразной среде путем макроскопического перемещения вещества этой среды. Выше уже приводился простейший пример конвекции — свободная (или естественная) конвекция, возникающая вследствие неравномерного распределения температуры в среде, подверженной действию массовых сил (например, силы тяжести или инерционных сил, вызванных малыми ускорениями на борту космического аппарата). Это явление каждый может легко наблюдать у себя дома в любых кипятильниках, когда слои жидкости, имеющие более высокую температуру и вследствие этого более низкую плотность, будут всплывать вверх и переносить с собой теплоту, а на их место, на горячее дно кипятильника, будут опускаться более холодные и плотные слои.

Относительная роль теплообмена за счет свободной конвекции и теплопроводности определяется числом Рэлея:

Здесь g — действующее на систему ускорение, L — характерный размер системы, β — коэффициент объемного расширения, ΔT — перепад температуры в среде, χ — коэффициент теплопроводности, η — вязкость среды. Отсюда следует, что в условиях, приближающихся к невесомости (g → 0), Ra → 0, и, следовательно, ролью конвекции, ведущей к эффективному перемешиванию среды, можно пренебречь.

Этот вывод имеет двоякое значение. Во-первых, уменьшается вклад конвекции в процессы теплообмена, и передача тепла осуществляется более медленным процессом теплопроводности. Во-вторых, исключение конвекционных токов в среде приводит к тому, что основную роль в массообмене будут играть не макроскопические перемещения вещества, а процессы диффузии. А это, в свою очередь, открывает возможность получения веществ, распределение примесей в которых будет значительно более однородным, чем на Земле.

Кроме свободной конвекции, существует целый ряд Других конвекционных эффектов, одна часть которых зависит от массовых сил, а другая нет. Известна также вынужденная конвекция, которая происходит под действием какого-либо внешнего фактора (например, мешалки, насоса и т. п.). В космических условиях этот вид конвекции используют, чтобы обеспечить нужную скорость отвода тепла от работающих агрегатов.





В качестве примера конвекции, не зависящей от массовых сил, укажем термокапиллярную конвекцию, которая выражается в том, что на границе жидкой фазы могут возникать и распространяться волны. Капиллярные волны обусловлены перепадами температуры, из-за наличия которых величина коэффициента поверхностного натяжения непостоянна вдоль поверхности. Этот тип конвекционного течения, очевидно, не зависит от величины g и может приводить к ухудшению однородности материалов, полученных в космических условиях. Способ компенсации вредных последствий этого эффекта состоит в уменьшении фактических перепадов температуры вдоль поверхности раздела фаз.

Космические аппараты и специальное оборудование для космического производства

Оборудование для космических экспериментов. Говоря о проблеме производства в космосе новых материалов, обычно имеют в виду пять направлений исследований и разработок:

1. Космическая металлургия.

2. Полупроводниковые материалы.

3. Стекло и керамика.

4. Медико-биологические препараты.

5. Исследование физических эффектов в условиях невесомости.

Первые четыре направления непосредственно нацелены на получение новых или улучшенных материалов и изделий на борту космических аппаратов (КА). Задача пятого направления состоит в развитии науки о поведении вещества в космических условиях с целью создания теоретических основ космического производства.

Проведение исследований во всех этих направлениях требует разработки специальных бортовых установок. Поэтому перед тем как перейти к разбору конкретных направлений, целесообразно рассмотреть, как обстоит дело с созданием специального оборудования для космических экспериментов. При этом мы ограничимся в данном разделе рассмотрением наиболее универсальных типов установок, которые могут быть использованы для решения ряда различных задач. Про те экспериментальные установки, которые имеют более узкое назначение или предназначены для выполнения конкретных исследований, удобнее рассказать, обсуждая сами эти исследования.