Добавить в цитаты Настройки чтения

Страница 11 из 16



Рис. 12. Принципиальная схема электромагнитного резонаторного двигателя: 1 — источник электромагнитного излучения, 2 — зеркало наземной установки, 3 — зеркало летательного аппарата 4 — вентиль, 5 — космический аппарат

Анализ схемы ЭМРД показывает, что основные параметры двигательной системы определяются характеристиками зеркал, источника излучения и точностью взаимной ориентации стационарной установки и космического аппарата. В свою очередь, эффективность ЭМРД определяется прежде всего максимальным удалением аппарата d, на котором коэффициент преобразования еще достаточно велик. Можно показать, что максимальный КПД передачи мощности между двумя зеркалами посредством электромагнитного излучения зависит только от параметра τ: τ = λd/R1R2, где R1R2 — размеры зеркал. Для τ < 1 КПД передачи может быть равным практически 100 %. С увеличением расстояния эффективность ЭМРД резко падает, как только перестает выполняться это условие.

Требования к КПД передачи достаточно жесткие. Так, например, при полном КПД системы 10 % минимально допустимый коэффициент полезного действия передачи составляет 99,9 %. Отметим, однако, что 10 % очень высокое требование к полному КПД системы. В традиционной схеме выведения космического аппарата на орбиту с использованием ЖРД полный КПД преобразования химической энергии топлива в кинетическую энергию космического аппарата составляет всего 2–3 %. Поскольку в случае ЭМРД источник энергии находится вне космического аппарата, вполне допустимо даже некоторое уменьшение полного КПД преобразования по отношению к этому значению.

Сверхвысокочастотные реактивные плазменные двигатели. Ранее обсуждались двигательные схемы на основе внешних источников электромагнитного излучения, в основном использующие лазеры в качестве генератора. Соответственно этому излучаемые частоты этих типов генераторов лежат в инфракрасном и видимом диапазонах. Длины волн, соответствующие этим частотам, варьируются от 0,3 до 15 мкм, и хотя размеры антенн, необходимые для формирования лучей с малой расходимостью, составляют сотни тысяч и даже миллионы длин волн, абсолютные размеры не превосходят нескольких метров.

Возможность реализации мало расходящихся пучков при относительно небольших размерах антенн является одной из причин пристального внимания к видимому и инфракрасному диапазонам длин волн, а в перспективе к ультрафиолетовому и рентгеновскому излучениям с целью реализации двигательных систем, основанных на внешних источниках энергии. Однако исторически сложилось так, что предложения по использованию электромагнитного излучения для создания тяги были связаны с СВЧ-излучением. И очень может быть, что несмотря на ряд преимуществ оптического и инфракрасного диапазонов первоначальная реализация двигателей с внешними (искусственными) источниками энергии будет осуществлена в СВЧ-диапазоне.

Одной из возможностей преобразования энергии СВЧ-диапазона в энергию силы тяги является введение СВЧ-мощности в высокоионизированную плазму на частоте циклотронного резонанса (т. е. на частоте, с которой вращаются электроны вокруг линий магнитного поля). При совпадении частоты СВЧ-излучения и частоты циклотронного резонанса происходит интенсивная передача энергии электромагнитной волны электронам плазмы. В процессе столкновений между электронами и ионами часть энергии электронов передается ионам, в результате температура плазмы повышается, а СВЧ-излучение, проходя через нее и отдавая энергию, затухает. Требуемое магнитное поле В создается во внешней части ускорителя.

Рис. 13. Сверхвысокочастотный реактивный двигатель: 1 — волновод, 2 — полуволновое диэлектрическое окно, 3 — соленоид, 4 — инжекция рабочего тела

Возможное расположение элементов космического СВЧ-двигателя схематически показано на рис. 13. Такой двигатель состоит по существу из волновода, соленоида и прозрачного для электромагнитных волн окна, через которое поступает СВЧ-излучение. Окно служит для того, чтобы предотвратить обратный поток движущихся частиц в направлении источника СВЧ-излучения. В ускоритель входит система впрыска рабочего тела (топлива), а также средства обеспечения постоянной интенсивности магнитного поля (для получения совпадения частоты излучения и циклотронной частоты в пространстве взаимодействия). При уровне непрерывной мощности порядка 1 кВт и более поток СВЧ-излучения оказывается достаточным для полной ионизации инжектируемого рабочего тела и для сообщения плазме требуемой кинетической энергии.



Достоинства подобного вида ускорения плазмы обусловлены безэлектродной структурой ускорителя и полным отсутствием подвижных частей. Таким образом, можно в принципе ожидать, что двигатель будет отличаться предельной простотой конструкции и долговечностью. Маломощные СВЧ-двигатели (Р < 100 кВт) могут найти применение в недалеком будущем, после того как в них будут внесены некоторые технические усовершенствования. Использование же СВЧ-двигателей для создания основной тяги (Р > 100 кВт в непрерывном режиме) станет возможным, если будут реализованы системы передачи энергии с помощью СВЧ-пучков (спутниковые солнечные электростанции).

Перспективы создания мощных источников электромагнитного излучения. Комплекс технических проблем, которые должны быть решены при создании двигательной космической системы с внешними источниками электромагнитного излучения, тесно взаимосвязан с проблемами, стоящими перед другими областями науки и техники, а также с более общими проблемами.

Лазеры, как известно, были созданы вне всякой связи с космическими проблемами, и в течение более 10 лет не возникало идеи использовать их в качестве элемента космических двигательных систем. Развитие лазерной техники, заключающееся в росте излучаемой мощности, освоении все новых и новых диапазонов, улучшении характеристик и т. д., происходило и происходит достаточно бурно. Достаточно сказать, что мощность излучения лучших современных образцов лазеров в 106 — 108 раз превосходит мощность излучения первых лазеров. Такой прогресс, который уже ощутимо наметился к концу 60-х годов, позволил рассматривать лазеры как потенциально мощные источники удобного для многих целей вида энергии — электромагнитного излучения, светового, инфракрасного и ультрафиолетового диапазонов (сейчас этот спектр еще более расширился).

Вот тогда и родилась идея использовать лазеры для разгона ракет, которая была подготовлена всей короткой историей развития лазерной техники. С другой стороны, вопрос о применении внешних источников энергии назрел и в космической технике, где он неоднократно поднимался и обсуждался, начиная с работ К. Э. Циолковского, Ф. А. Цандера и других пионеров космонавтики.

В плане преобразования энергии электромагнитного излучения в кинетическую энергию рабочего тела вопрос был подготовлен работами по разогреву плазмы СВЧ-излучением и первыми экспериментами по созданию двигателей, использующих для создания тяги электромагнитную энергию.

Идеи рождаются по-разному: одни появляются задолго до возможности реализации, а иногда и проведения целенаправленных экспериментов по их проверке. Реализация других, судя по общему уровню развития науки и техники, могла бы начаться значительно раньше, чем они возникли. Идея использования лазеров и других мощных источников электромагнитного излучения в космических двигательных установках не опередила течения событий и не опоздала. Ее рождение практически совпало с появлением возможностей по проведению работ, направленных на реализацию этой идеи.

Проблема выведения космических аппаратов на орбиту сегодня находится на стыке нескольких областей физики и техники: космические двигатели, лазеры, взаимодействие излучения с веществом, механика, прием и передача мощных пучков электромагнитного излучения и т. д. Каждое из этих направлений науки и техники имеет массу приложений, и поэтому прогресс в развитии идей лазерного выведения определяется не только (а в начальной стадии и не столько) параметрами экспериментальных устройств, но и характеристиками, которыми обладают элементы, входящие в системы другого назначения.