Добавить в цитаты Настройки чтения

Страница 8 из 12

• стандарты IEEE 802.11d, IEEE 802.1 le, IEEE 802.11i, IEEE 802.11j, IEEE 802.1 lh и IEEE 802.1 lr описывают параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д.;

• стандарты IEEE 802.11f и IEEE 802.11с описывают принцип взаимодействия между собой точек доступа, работу радиомостов и т. п.

Стандарт IEEE 802.11 был «первенцем» в стандартах беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, занималась этим рабочая группа из IEEE. Их целью была разработка единого стандарта для радиооборудования, которое работало бы на частоте 2,4 ГГц. При этом ставилась задача достичь скорости в 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно (описание данных методов см. ниже в подразделах данной главы «Метод DSSS» и «Метод FHSS»).

Работы над созданием стандарта закончились через семь лет. Цель была достигнута, но скорость, которую обеспечивал стандарт, оказалась слишком мала для современных потребностей. Поэтому рабочая группа из IEEE продолжила свою работу с целью создания новых, более скоростных стандартов.

При разработке стандарта IEEE 802.11 учитывались особенности сотовой архитектуры системы. Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Вот и получается, что зона выглядит как сот, который работает под управлением базовой станции, в качестве которой выступает точка доступа. Часто сот называют также базовой зоной обслуживания.

Чтобы соты могли общаться между собой, используется специальная распределительная система (Distribution System, DS). Из недостатков распределительной системы стандарта 802.11 можно отметить отсутствие роуминга, то есть правил обслуживания клиентов из разных сот.

Также стандартом предусмотрена работа компьютеров без точки доступа, в составе одной соты – в этом случае функции точки доступа выполняют сами рабочие станции.

Стандарт 802.11 разработан и ориентирован на оборудование, работающее в полосе частот 2400–2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая при этом топологию сети.

IEEE 802.11а – перспективный стандарт беспроводной сети, рассчитанный на работу в двух радиодиапазонах: 2,4 ГГц и 5 ГГц. При этом используется метод OFDM, что позволяет достичь максимальной скорости передачи данных в 54 Мбит/с. Кроме этой скорости, спецификациями предусмотрены и другие:

• обязательные – 6, 12 и 24 Мбит/с;

• необязательные – 9, 18, 36, 48 и 54 Мбит/с.

Как обычно, этот стандарт имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

• использование параллельной передачи данных;

• высокая скорость передачи данных;

• возможность подключения большого количества компьютеров.

Недостатки стандарта следующие:

• меньший радиус сети при использовании диапазона 5 ГГц (примерно 100 м);

• большая потребляемая мощность радиопередатчиков;

• более высокая стоимость оборудования по сравнению с оборудованием других стандартов;

• требуется наличие специального разрешения на использование диапазона 5 ГГц.

Чтобы иметь возможность достичь высоких скоростей передачи данных, стандарт IEEE 802.1 la в своей работе использует технологию квадратурной амплитудной модуляции QAM.



Работа над стандартом IEEE 802.11b (другое название – IEEE 802.11 High rate) была закончена в 1999 году, и именно с ним связано понятие Wi-Fi (Wireless Fidelity).

Его работа основана на методе прямого расширения спектра (DSSS) с использованием восьмиразрядных последовательностей Уолша. При этом каждый бит данных кодируется с помощью последовательности дополнительных кодов (ССК), что позволяет достичь скорости передачи данных в 11 Мбит/с.

Как и базовый стандарт, стандарт IEEE 802.11b работает с частотой 2,4 ГГц, используя при этом не более трех неперекрывающихся каналов. Радиус действия сети при этом составляет около 300 м.

Отличительная особенность этого стандарта – в случае надобности (ухудшение качества сигнала, большая удаленность от точки доступа, разные помехи) скорость передачи данных может уменьшаться вплоть до показателя 1 Мбит/с.[6] И наоборот, обнаружив, что качество сигнала улучшилось, сетевое оборудование автоматически повышает скорость передачи до максимального уровня. Этот механизм носит название динамического сдвига скорости.

Примечание

Кроме оборудования стандарта IEEE 802.11b, часто можно встретить оборудование IEEE 802.11b+, отличие между которыми заключается лишь вскорости передачи данных. В последнем случае скорость передачи данных составляет 22 Мбит/с благодаря использованию метода двоичного пакетного сверточного кодирования (РВСС) и условия применения одинакового оборудования.

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования, им описываются правила касательно разрешенной мощности излучения передатчиков в допустимых законами диапазонах частот.

Данный стандарт очень важен, так как для работы сетевого оборудования используются радиоволны, которые, если не будут соответствовать указанным параметрам, могут помешать другим устройствам, работающим в этом диапазоне частот или диапазоне, близко лежащем к ним.

Поскольку через сеть могут передаваться данные разных форматов и разной значимости, то необходимо иметь механизм, который умел бы определять их важность и придавал их передаче необходимый приоритет. За это призван отвечать стандарт IEEE 802.11е, который был специально разработан с целью передачи мультимедийных данных: потокового видео или аудио с гарантированным качеством и гарантированной доставкой.

Стандарт IEEE 802.11f разработан с целью обеспечения аутентификации сетевого оборудования (рабочей станции), если компьютер пользователя перемещается от одной точки доступа к другой, то есть между сегментами сети. При этом вступает в действие протокол обмена служебной информацией (Inter-Access Point Protocol, IAPP), которая необходима для передачи этой информации между точками доступа. При этом достигается эффективная организация работы распределенных беспроводных сетей.

Наиболее распространенным и быстрым до недавнего времени стандартом можно считать стандарт IEEE 802.11g, который вобрал в себя все самое лучшее от стандартов IEEE 802.11а и IEEE 802.11b, а также содержит много нового. Целью его создания было достижение скорости передачи данных в 54 Мбит/с.

Как и стандарт IEEE 802.11b, стандарт IEEE 802.11g создан для работы в условиях использования диапазона 2,4 ГГц.

Стандарт предписывает обязательные и опциональные скорости передачи данных:

• обязательные – 1, 2, 5,5, 6, 11, 12 и 24 Мбит/с;

• опциональные – 33 Мбит/с, 36 Мбит/с, 48 Мбит/с и 54 Мбит/с.

Для достижения таких показателей используют кодирование с помощью последовательности дополнительных кодов (ССК), метод ортогонального частотного мультиплексирования (OFDM), метод гибридного кодирования (CCK-OFDM) и метод двоичного пакетного сверточного кодирования (РВСС). Стоит отметить, что одна и та же скорость передачи может быть достигнута разными методами, но при этом обязательные скорости передачи данных достигаются только с помощью методов ССК и OFDM, а опциональные скорости – методов CCK-OFDM и РВСС.

Преимущество оборудования стандарта IEEE 802.11g – его совместимость с оборудованием IEEE 802.11b, то есть можно легко использовать свой компьютер с сетевой картой стандарта IEEE 802.11b с точкой доступа стандарта IEEE 802.11g, и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а, поэтому оборудование стандарта IEEE 802.11g по праву нашло свое применение в переносных компьютерах.

6

Предусмотрено поэтапное снижение скорости: 5,5, 2 и 1 Мбит/с.