Страница 3 из 3
На горение 1 моля углерода затрачивается 1 кмоль кислорода объемом 22,4 м3. Если надо рассчитать расход кислорода на 1 кг углерода, то объем 1 кмоля кислорода делят на молекулярную массу углерода, равную 12. Поэтому на 1 кг углерода расходуется 22,4 / 12 = = 1,867 м3/кг кислорода. Рассуждая аналогично, получим, что на горение 1 кг водорода затрачивается 22,4 / /(2 О2) = 5,5 м3 кислорода (произведение в знаменателе означает, что в реакции горения принимают участие две молекулы водорода с молекулярной массой 2). На горение 1 кг серы расходуется 22,4 / 32 = 0,7 м3 кислорода.
Отношение действительного расхода воздуха к теоретически необходимому расходу называют коэффициентом расхода воздуха:
α = La /L, или La= αL,
где La и L– действительный и теоретический расходы воздуха, м3/кг или м3/м3. Коэффициент расхода воздуха зависит от вида топлива, конструкции топливосжигающего устройства (горелки или форсунки) и температуры подогрева воздуха и газа.
7. Контроль коэффициента расхода воздуха
При недостатке воздуха или несовершенстве топли-восжигающих устройств горение может быть неполным.
Наличие в продуктах горения горючих составляющих (оксида углерода, водорода, метана или сажистого углерода) обусловливает химическую неполноту горения или, как чаще говорят, химический недожог топлива. Последний характеризуется потерями теплоты в процентах от низшей теплоты сгорания топлива.
Чем больше коэффициент расхода воздуха, тем полнее протекает процесс горения. Однако увеличение этого коэффициента приводит к повышенному расходу воздуха и значительным потерям теплоты с газами, уходящими из печи. Температура в печи снижается, что приводит к ухудшению теплоотдачи в рабочем пространстве и усиленному окислению металлов. Поэтому в практике эксплуатации печей стремятся к выбору оптимального коэффициента расхода воздуха a.
Контроль aосуществляют двумя методами. По одному из них измеряют расходы топлива и воздуха и с помощью заранее вычисленных таблиц определяют а.Од-нако этот метод не позволяет учесть воздух, попадающий в печь через рабочие окна и неплотности в кладке печей. Поэтому периодически коэффициент расхода воздуха проверяют по составу продуктов сгорания при помощи газоанализаторов. Химическим анализом определяют содержание в продуктах сгорания RO2, CO, Н2, СН4 и О2, а затем с помощью формулы С. Г. Тройба определяют a:
α = 1+ UO2изб/ ΣRO2.
Здесь O2изб = О2 – 0,5СО – 0,5Н2– 2СН4– содержание избыточного кислорода.
ΣRO2 = RO2+ CO + СН4+…,%;
U– коэффициент, зависящий от вида топлива.
Для мазута U=0,74, для природного газа – 0,5.
Рассмотрим примеры.
Задача.
Определить a,если RO2 14%, СО 4%, СН40,5%; Н2 1%, О2 2%.
O2изб = 2 – 0,5(4 + 1) – 2 О 0,5 = -1,5%;
ΣRO2 = 14 + 4 + 0,5 = 18,5%;
a= 1 – 0,5 О 1,5 / 18,5 = 0,96.
8. Использование энергии
Некоторые положения в области тепловой работы печей могут быть получены непосредственно из классической термодинамики обратимых процессов.
Под тепловой работой печи понимается совокупность происходящих в ней тепловых процессов, конечной целью которых является совершение того или иного технологического процесса.
Представим себе печь как сочетание зон технологического процесса ЗТП и генерации тепла ЗГТ, огражденных от окружающей среды кладкой (футеровкой) К. В зоне технологического процесса сосредоточен материал М. Согласно первому закону термодинамики может быть записано следующее уравнение:
QэηK.И.Э =QM + Qk
где Qэ – введенная мощность, Вт/кг;
ηK.И.Э – коэффициент использования энергии в пределах рабочего пространства печи;
QM, Qk – соответственно мощность, усвоенная материалом М и кладкой К, Вт/кг.
Все величины в уравнении (1) отнесены к 1 кг массы материала М.
Коэффициент использования энергии ηK.И.Э зависит прежде всего от вида энергии. Так, электрическая энергия может полностью превращаться в тепло, усвоенное материалом (полезное) и кладкой, поэтому ηK.И.Э = 1. При использовании в печах химической энергии топлива коэффициент использования энергии ηK.И.Э всегда меньше единицы. В топливных печах этот коэффициент называют коэффициентом использования тепла ηK.И.Т Коэффициент характеризует важнейшее понятие о работоспособности энергии в конкретных условиях. В общем виде значение Ькиэ может быть записано следующим образом:
ηK.И.Э = (Qэ – Q´э)/Qэ =1 – Q´э/Qэ,
где Q3– мощность, которая в виде химического и физического тепла газовой фазы уходит за пределы рабочего пространства печи, Вт/кг.
Величина ηK.И.Э определяется, с одной стороны, полнотой сжигания топлива при данном коэффициенте расхода кислорода, т. е. быстротой смешиваний топлива и кислорода, и, значит, совершенством процессов мас-сообмена. С другой стороны, величина ηK.И.Э зависит от температуры уходящих из печи газов, т. е. от совершенства процессов теплообмена.
Работоспособность тепла и химической энергии зависит от заданных условий протекания технологического процесса и организации процессов тепло– и массопереноса и поэтому представляет собой величину, значение которой не может быть найдено с помощью термодинамики обратимых процессов, так как связано с кинетикой тепло– и массообмена.
9. Температурный и тепловой режимы
Внутренняя энергия системы слагается из кинетической и потенциальной энергий. Кинетическая энергия – энергия беспорядочного движения атомов и молекул, потенциальная энергия – энергия их взаимного притяжения и отталкивания.
В соответствии с кинетической теорией газов (закон Максвелла-Больцмана) термодинамическое понятие равновесной температуры для идеального газа может быть расшифровано с помощью уравнения:
T = 2NEn /3R = Nmwn2 / 3R,
где Еп – энергия nчастиц с массой m в узком диапазоне значений их скоростей;
N – число Авогадро;
R– газовая постоянная.
Эффективная температура представляет собой некоторую условную (приведенную) температуру греющей части печи, при которой обеспечивается такая же плотность теплового потока излучения на поверхность нагрева только от греющей части печи, какая в действительности имеется в рассматриваемой печи.
Действительные температуры пламени (нагревателя) и внутренней поверхности футеровки зависят от температуры поверхности нагрева и теплогенерации и в общем случае, кроме того, от месторасположения в печи и от времени. Изменение этих величин по длине печи и во времени Т = f (l, t) характеризует температурный режим печи.
Величина теплогенерации, выражаемая в ваттах, называется тепловой мощностью QТ.М.. При стационарном режиме тепловая мощность является величиной постоянной, не зависящей от времени (QТ.М. = const). При нестационарном режиме QТ.М. = f (t). Отношение максимальной тепловой мощности к средней мощности иногда называют коэффициентом форсирования:
Конец ознакомительного фрагмента. Полная версия книги есть на сайте ЛитРес.