Страница 64 из 73
Поскольку у нас зашла речь об элементах орбиты искусственных спутников, следует сказать и о периоде обращения и наклонения орбиты. Период обращения - это промежуток времени, в течение которого спутник совершает полный оборот вокруг небесного тела - Земли, Луны, Марса, Солнца и т. д. Наклонение орбиты искусственного спутника Земли представляет собой угол между плоскостью, мысленно проведенной через земной экватор, и плоскостью, в которой движется спутник. Это единственный параметр орбиты, обладающий тем замечательным свойством, что его значение остается практически постоянным на протяжении всего существования спутника, в то время как другие параметры могут претерпевать некоторые изменения.
Изменение плоскости орбиты (на несколько градусов и более) в принципе возможно, но для этого необходимо вмешательство в пассивный полет космического аппарата. Например, если включить реактивные двигатели при определенной ориентации аппарата. Однако чтобы изменить плоскости орбиты даже на несколько градусов, нужна большая энергия, сравнимая подчас с той, что была затрачена на выведение аппарата на орбиту. Изменение плоскости орбиты может произойти также, если космический аппарат будет пролетать в зоне протяжения Луны. Тогда под действием возмущающих сил наклонение орбиты может измениться. Однако, приняв новое положение, в дальнейшем она уже существенных изменений не претерпевает.
Есть еще одна космическая скорость, имеющая важнее значение для межпланетных перелетов. Речь идет о скорости, с которой космический аппарат, преодолев силу притяжения планеты, удаляется от нее в бескрайние просторы Вселенной. Ее называют скоростью удаления.
Вторая космическая скорость, как мы уже говорили, равна 11,2 километра в секунду. Если мы сообщим межпланетному аппарату такую скорость, он преодолеет силу земного притяжения и не упадет обратно на поверхность Земли, но и не удалится от ее орбиты. Вместе с Землей он станет двигаться вокруг Солнца по одинаковой или близкой к ней орбите.
Чтобы послать корабль или автоматическую станцию к планетам, надо при старте сообщить им такое количество энергии, чтобы они не только преодолели силу земной тяжести, но и сохранили за пределами сферы земного притяжения необходимую скорость.
Например, чтобы достичь орбиты Венеры, аппаратам нужно удаляться от Земли со скоростью минимум 2,494 километра в секунду. Для этого скорость его отлета с Земли должна составлять 11,462 километра в секунду. Для достижения орбиты Марса требуется скорость удаления 2,943 километра в секунду, а скорость отлета в этом случае должна быть равна 11,570 километра в секунду.
Неизменный интерес у всех аудиторий, в которых мне довелось бывать, вызывает вопрос о том, как управляют космическим кораблем.
Наиболее часто выполняемой в полете операцией является ориентация корабля в пространстве. Большее время полета он медленно вращается вокруг своих осей. Но в таком случае его солнечные батареи будут лишь время от времени освещаться солнцем и не дадут нужной электроэнергии. Тут нужна одноосная ориентация корабля на Солнце. Для связи с Землей при полетах к Луне и другим планетам антенны корабля должны быть ориентированы на Землю. Для коррекции орбиты, стыковки с другими кораблями и орбитальными станциями, для проведения многих научных и технических экспериментов, для спуска с орбиты необходима также пространственная ориентация космического корабля.
В настоящее время пространственная ориентация корабля может осуществляться с помощью различных систем: инерциальных, ионных, инфракрасных, радиотехнических, оптических и других. Однако наибольшую точность обеспечивают астрономические системы.
Расположение небесных объектов - Солнца, Луны, планет, звезд относительно друг друга в каждый момент времени точно известно, и если мы под нужными углами придадим осям корабля направление на небесные объекты, то получим требуемое положение корабля в пространстве.
Вот, например, как проводится астроориентация корабля по Солнцу и звезде.
Сначала в программно-временное устройство по командам с Земли вводятся необходимые данные, содержащие нужные нам значения углов. Один из оптических датчиков устанавливается в такое положение, чтобы угол между осью этого датчика и осью датчика Солнца соответствовал взаимному расположению Солнца и звезды в данный момент.
Процесс ориентации начинается с поиска Солнца. Двигатели малой тяги разворачивают корабль вокруг продольной оси до тех пор, пока Солнце не попадет в поле зрения датчика Солнца. Если мы в этом положении удержим корабль, то он окажется сориентированным лишь в одной плоскости: например, мы будет видеть внизу Землю. Но по орбите корабль может двигаться и задом наперед и боком. Чтобы этого не произошло, другие двигатели малой тяги разворачивают корабль вокруг оси, направленной на Солнце, до тех пор, пока звездный датчик не «захватит» нужную звезду. В этом положении корабль стабилизируется и далее удерживается двигателями ориентации по командам от гироскопических приборов, волчки которых раскручиваются во время стабилизации.
Почему звездный датчик не путает звезды, ведь их так много? Действительно, в каждый момент под одним и тем же углом от Солнца со всех сторон могут оказаться десятки звезд. Тем не менее, датчик «захватывает» только нужную звезду. Не ошибается он потому, что для ориентации берутся не любые звезды, а лишь самые яркие.
На высотах около 200 километров над поверхностью Земли, где чаще всего проходят орбиты космических кораблей, плотность атмосферы сравнительно невелика. Но, несмотря на значительное ее разрежение, она все же оказывает определенное тормозящее воздействие на корабль таких размеров, как «Союз». Если полет продолжается долго, к примеру несколько недель, то высота орбиты будет постепенно снижаться, а тормозящее влияние атмосферы возрастать. Если не предпринять мер, корабль войдет в плотные слои атмосферы, потеряет орбитальную скорость и совершит «вынужденную» посадку.
Чтобы продлить полет, посредством коррекции увеличивают высоту полета корабля.
Но коррекция орбиты проводится и для других целей. Например, для того чтобы обеспечить прохождение космического корабля под заданным районом в определенное время. Если мы увеличим высоту полета, возрастет период обращения корабля вокруг Земли. Проведя соответствующую коррекцию, можно обеспечить прохождение своего корабля над местом старта другого корабля и наблюдать из космоса за его выведением на орбиту.
Коррекция орбиты может проводиться вручную или автоматически, с использованием астроориентации.
Давайте выполним коррекцию орбиты с использованном ручной ориентации.
Обычно необходимые данные для коррекции поступают с Земли и фиксируются в бортовом запоминающем устройстве. Однако величину разгонного или тормозного импульса, а также время включения двигательной установки может рассчитать и ввести в запоминающее устройство экипаж корабля. Для этого существует специальный пульт. Но поскольку параметры орбиты корабля более точно определяются средствами наземного комплекса, специалистам координационно-вычислительного центра, как говорится, и карты в руки.
Предположим, что данные для коррекции рассчитаны и введены в запоминающее устройство. Теперь включаем клавишу. Засветились надписи «Маневр с ручной ориентацией», «Визир для ориентации». Беремся за ручки управления. Внимание - на экран визира. Медленно движется по экрану Земля. Оперируя ручками управления, включаем реактивные микродвигатели и поворачиваем корабль до совмещения центральной части экрана с направлением на центр Земли. Вот перекрестие совпало с этим направлением. Корабль сориентирован. Нажимаем другую кнопку - вспыхивает транспарант «Ориентация на гироскопах». Это значит, что волчки-гироскопы начали стремительное вращение и «запомнили» пространственное положение корабля. Теперь при любых отклонениях автоматически выдаются команды на двигатели, которые возвращают корабль в исходное положение.
Но произошла пока только одноосная ориентация корабля. Теперь надо развернуть его так, чтобы основная двигательная установка была направлена вперед по движению. Все последующие операции выполняются автоматически. Из запоминающего устройства поступает сигнал на разворот корабля в горизонтальной плоскости. Вот корабль занял нужное положение в пространстве. Автоматически выдается команда на включение двигательной установки.