Добавить в цитаты Настройки чтения

Страница 35 из 39



В 1980-х годах были сформулированы основные требования к перевязочным материалам. Во-первых, материал или продукты его распада не должны быть канцерогенами и мутагенами. Во-вторых, у них должна отсутствовать острая и хроническая токсичность, в-третьих, материал не должен вызывать раздражение и аллергию. Кроме этих медико-биологических требований был определен и целый ряд физико-химических параметров. К ним относятся механические характеристики, паро– и влагопроницаемость. Иными словами, материал обязательно должен «дышать», но при этом не пропускать микроорганизмы, обладать способностью сорбировать («очищать») кровь и раневое отделяемое, легко и плотно прилегать к ране, моделируя любой профиль, легко отделяться от раневой поверхности, не разрушая вновь образовавшуюся живую ткань. Ведь именно грубый перевязочный материал – одна из главных бед, замедляющих процесс выздоровления, когда при удалении бинта травмируется «свежий» эпителий и повреждаются кровеносные сосуды.

Казалось бы, есть полное понимание того, каким должен быть идеальный перевязочный материал, однако почему же до сих пор его не существует? Это объясняется тем, что перечисленные требования практически взаимно исключают друг друга, поскольку сама рана на определенных стадиях заживления ведет себя по-разному. Например, сильно экссудирующие раны необходимо обрабатывать при помощи сильных сорбентов, чего нельзя делать на заключительных стадиях заживления – иначе рана будет высушена. Однако, несмотря на то что создать универсальный бинт пока еще никому не удалось, подобрать перевязочные материалы, адекватные той или иной стадии раневого процесса, вполне реально.

В настоящее время на мировом рынке насчитывается более 2 тысяч наименований самых разнообразных перевязочных материалов. При этом ежегодно проходят успешные испытания и официально регистрируются около полусотни новых торговых марок.

Все более популярными, наравне с традиционными бинтами на основе хлопка, льна или вискозы, становятся некоторые модификации перевязочных материалов с покрытиями. Например, пористая марля, покрытая мягким парафином, или же перевязочные материалы, пропитанные физиологически активными веществами. Таким образом к целлюлозным волокнам удалось «подшить» различные антибиотики. Однако «бинты» с антибиотиками абсолютно не пригодны для тех, у кого есть аллергия к этой группе лекарственных препаратов, поэтому в последние годы перевязочные материалы с иммобилизованными антибиотиками не находят широкого применения. Еще одной инновацией стала возможность иммобилизовывать на волокнах протеолитические ферменты, которые способны очищать раны от токсических продуктов жизнедеятельности микроорганизмов, а также от «остатков» поврежденных тканей.

Следующий вид перевязочных материалов – пленочные покрытия, как правило, представляющие собой тонкие (толщина менее 1 мм) прозрачные мембраны. Материалом для пленок может служить полиуретан или силикон. Часто края таких покрытий для лучшего контакта с неповрежденной кожей обрабатывают специальным адгезивом, обычно акриловым. Такие покрытия применяют для слабо экссудирующих ран, а также на заключительных этапах эпителизации или в случае поверхностных ожогов. Они хорошо моделируют профиль раны и позволяют вести наблюдение за раневым процессом.

В начале 1960-х годов была запатентована удачная гидроколлоидная композиция, состоящая из синтетического полимера, целлюлозы, желатина и пектина. Полимеры, входящие в состав такого перевязочного материала и напоминающие по характеристикам резину, обеспечивали поглощение раневого отделяемого и придавали материалу в целом эластичность. В дальнейшем многие компании воспроизвели и усовершенствовали эту композицию. Гидроколлоиды получили исключительно широкое применение за рубежом. В России гидроколлоидное покрытие «Биокол» на основе фторсодержащих полимеров и полисахаридов было разработано сотрудниками Института биологической физики Академии наук.

Для того чтобы решить проблему совместимости требований к перевязочному материалу, были созданы многослойные покрытия: верхний слой покрытий защищает от инфекций, нижний обеспечивает сцепление с раной. Промежуточный слой выполняет сорбционные функции. Гидроколлоидные покрытия выпускаются обычно в форме многослойных пленок.



Весьма схожи с гидроколлоидами гидрогели. Основой этих биоматериалов являются сильные сорбенты на основе целлюлозы, акриловой кислоты или полиэтиленгликоля, способные удерживать до 95% воды от общего веса. Понятно, что эти материалы применяются для гнойных и сильно экссудирующих ран. Совсем недавно появились углеродные сорбирующие повязки.

Еще один вид перевязочных материалов – коллагеновые, содержат, как понятно из названия, коллаген – основной структурный белок дермы. Несмотря на прямую направленность материала на заживление раны, сделать эффективный коллагеновый материал, как ни странно, оказалось делом не простым. Сам коллаген изучен биохимиками досконально, но создать устойчивую трехмерную конструкцию с его использованием достаточно трудно. Сшивающие коллаген агенты зачастую оказываются токсичными, а сам материал буквально напоминает подметку. Это объясняется отчасти тем, что многие технологии в производстве перевязочного материала были привнесены из кожевенной промышленности. Другая проблема, связанная с переизбытком коллагена, – это образование келоидных рубцов.

В последние годы в связи с распространением вирусных и тяжелых инфекционных заболеваний в развитых странах резко ужесточились требования к применению белков животного происхождения. Это стимулировало разработку материалов на основе биополимеров растительного происхождения, и прежде всего альгинатов, получаемых из морских водорослей. Сегодня на основе альгината разработано более двух десятков перевязочных материалов. Альгинат может включаться и в гидроколлоидные композиции. В России такое альгинатное покрытие производится около двух десятков лет.

Наверное, самым первым письменным описанием способа лечения ран можно считать актуальное и по сей день упоминание, оставленное шумерами на глиняной табличке, относящееся приблизительно к 2200 году до н. э. Она гласит: «Промой рану, нанеси повязку, закрепи повязку». В Древнем Египте в качестве перевязочного средства широко применяли аналоги традиционных бинтов. Для этого приходилось теребить и распушать природные волокна, получаемые из различных овощей. Сходный метод приготовления повязок из теребленого хлопка или льна продолжал применяться и в XIX столетии. В России такой материал называли корпией (от лат. carpo – «вырываю», «щиплю»). Идея использования клейких (адгезивных) повязок, обеспечивающих более плотный контакт с раной, принадлежит египтянам. Интересно, что для этого они использовали ладан и мирру, специально импортируя их из Восточной Африки. По представлениям древних египтян, смолы, вытекающие из «раны» дерева, передавали свои жизненные силы раненому человеку.

Лечение хронических ран и трофических язв до сих пор остается одной из самых серьезных проблем в медицине. Несколько лет назад для ее разрешения были предприняты попытки создания материалов, включающих в себя ростовые факторы, наличие которых позволило бы сдвинуть раневой процесс с «мертвой точки». Ростовые факторы – это небольшие белковые молекулы, получаемые методами генной инженерии. В 1997 году был выпущен на рынок гель, содержащий тромбоцитарный ростовой фактор, предназначенный для лечения трофических язв различной этиологии.

Парадоксальная и очень смелая идея была высказана в конце 1990-х годов немецкими учеными, предложившими селективно «отлавливать» в раневом отделяемом молекулы, тормозящие процесс заживления. Некоторые из таких молекул на сегодняшний день идентифицированы – это металлопротеиназы, ферменты, которые разрушают вновь синтезируемый коллаген. Но сегодня пока еще трудно сказать, увенчаются ли подобные исследования успехом.