Добавить в цитаты Настройки чтения

Страница 2 из 21



Елена Шмелева | Фото Андрея Семашко

Планетарий: Наблюдатель невидимого

Практически до конца 40-х годов понятие «астрономические наблюдения» было равнозначно понятию «оптические наблюдения». Видимый свет в широком диапазоне длин волн электромагнитного излучения — лишь узкая щель, сквозь которую люди в течение тысячелетий заглядывали во Вселенную. А вот рентгеновские наблюдения позволяют не только раздвинуть границы «оптического окна», но и открыть, по сути, новый, неизведанный мир высоких энергий. Тот мир, где материя нагревается до миллионов градусов, где господствуют сильные магнитные поля и экстремальная гравитация, где рождаются и умирают звезды. Но космическое излучение в этом диапазоне почти полностью поглощается земной атмосферой, поэтому, несмотря на то, что ренгеновские, или X-лучи, были открыты еще в конце XIX века, рентгеновская астрономия вынуждена была ждать наступления космической эры...

Излучения всех небесных тел, исследуемых астрономами до начала ХХ века, описывались тепловыми механизмами, поэтому серьезных причин полагать, что в космосе существует заметное рентгеновское излучение, идущее от объектов с очень высокими температурами (до миллионов градусов), не было. Первый намек на то, что такое излучение все же существует, появился в конце 40-х годов прошлого века, когда впервые было зарегистрировано рентгеновское излучение от Солнца. В конце 50-х были сделаны первые оценки рентгеновских потоков, ожидаемых от излучения обычных звезд. И только в 1962-м счетчики Гейгера, установленные на американской ракете «Аэроби-150», запущенной на высоту 200 км, обнаружили в энергетическом диапазоне от 1,6 до 6,2 КэВ не фоновое излучение, а локальный, неподвижный относительно звезд источник.

Определить его точное положение на небе было затруднительно, так как аппаратура не была рассчитана на точное наведение. Но стало ясно, что направление на источник (созвездие Скорпиона) не совпадало ни с одним из объектов Солнечной системы. Первый же взгляд на небо в рентгеновских лучах поставил задачу, на решение которой потребовались долгие годы. А точка, располагавшаяся в созвездии Скорпиона, стала отправной в истории нового направления астрономии. Существование этого источника, названного SCO X-1, было подтверждено в 1963 году.

В 60-е годы рентгеновские исследования проводились с помощью приборов, установленных на борту ракет и высотных аэростатов. Точность этих приборов была невысока, но тогда ученых интересовали не столько характеристики рентгеновских источников, сколько сам факт их существования и распределения по Галактике. Установка же более сложного оборудования было делом невыгодным, так как по окончании полета ракеты оно разрушалось вместе с ней. За 8 лет ракетных и аэростатных исследований на рентгеновскую карту неба было нанесено всего 40 источников. Ситуация резко изменилась с появлением спутников, способных активно работать длительное время, к тому же их положение контролировалось с достаточной степенью надежности, а значит, и направление на источник могло быть выдержано с большой точностью.

Интересные результаты были получены с борта орбитальной станции «Салют-4». Помимо этого, рентгеновские детекторы, способные исследовать излучение источников в большом энергетическом диапазоне, работали и на борту станции «Салют-7», и на советской автоматической станции «Астрон».



Первый широкомасштабный обзор «рентгеновского» неба был выполнен американским спутником «Ухуру», запущенным в декабре 1970 года, вес которого составил всего 175,5 кг, а разрешающая способность его бортового телескопа была ниже, чем у человеческого глаза в оптическом диапазоне. Результатом его работы стала первая подробная карта, где самым ярким источником был SCO X-1, к тому же уже на пределе чувствительности были обнаружены другие источники, в 10 000 раз слабее его.

По мере совершенствования техники на орбиту поднимались все более сложные и разнообразные приборы, с помощью которых были подробно изучены объекты, обнаруженные «Ухуру», и совершены новые открытия. В 1975 году секретный американский спутник «Вела» и астрономический нидерландский спутник ANS зарегистрировали рентгеновские барстеры — вспышки жесткого излучения. ANS удалось измерить рентгеновское излучение звездных корон (верхних атмосфер) у Капеллы и Сириуса.

В 1978 году отправился на орбиту спутник-обсерватория «Эйнштейн». На его борту был установлен первый большой рентгеновский телескоп с зеркалами косого падения с диаметром входного отверстия 60 см. По своему разрешению он был аналогичен разрешению оптического телескопа Галилея 1610 года! До «Эйнштейна» астрономы смотрели на рентгеновское небо как бы невооруженным глазом, он открыл телескопическую эру рентгеновской астрономии. В задачу «Эйнштейна» входил не только поиск новых источников, но и исследование избранных объектов, список которых включал практически все типы небесных тел. «Эйнштейну» удалось наблюдать объекты, которые в миллион раз слабее самого яркого источника SCO X-1, и определить точное положение более 7 000 источников. Наблюдения показали, что почти каждая звезда благодаря горячей газовой короне является источником рентгеновского излучения. В этом диапазоне наблюдались остатки вспышек сверхновых — сброшенные звездами расширяющиеся оболочки, заполненные горячим газом. Оказалось, что рентгеновское излучение во Вселенной — явление такое же обычное, как и оптическое. Рентгеновское небо заполнено квазарами, активными галактиками и скоплениями галактик.

В 80-е годы стартовали новые рентгеновские телескопы на японских спутниках «Тенма» и «Гинга», советских — «Астроне», «Кванте» и «Гранате» и на европейском спутнике ЕХОSAT. В 90-е годы, когда к работе подключились совместная американо-европейская обсерватория ROSAT и японский спутник ASCA, началось изучение горячих газовых дисков вокруг нейтронных звезд, или черных дыр, входящих в состав тесных звездных пар, активных ядер галактик. На карту было нанесено уже 100 000 источников рентгеновского излучения. Цифра внушительная, но если бы оптические телескопы смогли увидеть только 100 000 звезд, они остановились бы на звездах 9-й величины, которые только в 20 раз слабее видимых невооруженным глазом в безлунную ночь. В оптическом диапазоне наблюдатели добрались уже до 24-й звездной величины и останавливаться не собираются. Мечта о большой космической рентгеновской обсерватории, которая могла бы «видеть» больше и дальше, не оставляла астрономов.

Первый проект большого орбитального рентгеновского телескопа появился в 1970-м, еще до запуска «Ухуру», когда было известно лишь 40 рентгеновских источников. Разработка, конструирование и строительство телескопов, которые должны разместиться в космосе, работая в условиях враждебной среды при огpомном перепаде температур и вакуума под контролем с Земли, обычно занимает многие годы и тpебует огpомных затрат. А так как в то время велась подготовка к запуску космической обсерватории «Эйнштейн», то к вопросу о большом космическом телескопе NASA вернулось только в 1976-м. Финансирование проекта AXAF началось в 1977 году, и Центp космических полетов им. Маршалла начал предварительное проектирование телескопа. Его создание задержалось более чем на десятилетие, во-первых, из-за финансовых проблем, а во-вторых, из-за трагедии, произошедшей с «Челленджером». Зеленый свет был дан проекту конгрессом США лишь в 1988 году.

В 1992-м, опять же из-за сложностей с финансированием, для уменьшения стоимости орбитальной обсерватории было pешено сократить количество используемых зеркал с 12 до 8, а вместо 6 предусмотренных научных инструментов задействовать всего 4. В течение 20 лет группы ученых, инженеров, техников и менеджеров в многочисленных правительственных центрах, университетах и коpпоpациях были вовлечены в строительство и сбоpку большой рентгеновской обсерватории, получившей название «Чандра».