Добавить в цитаты Настройки чтения

Страница 36 из 49



  Важным шагом в развитии понятия натурального Ч. является осознание бесконечности натурального ряда Ч., т. е. потенциальной возможности его безграничного продолжения. Отчётливое представление о бесконечности натурального ряда отражено в памятниках античной математики (3 в. до н. э.), в трудах Евклида и Архимеда. В «Началах» Евклида устанавливается даже безграничная продолжаемость ряда простых Ч., в книге Архимеда «Псаммит» — принципы для построения названий и обозначений для сколь угодно больших Ч., в частности бо'льших, чем «число песчинок в мире».

  С развитием понятия натурального Ч. как результата счёта предметов в обиход включаются действия над Ч. Действия сложения и вычитания возникают сначала как действия над самими совокупностями в форме объединения двух совокупностей в одну и отделения части совокупности. Умножение, по-видимому, возникло в результате счёта равными частями (по два, по три и т.д.), деление — как деление совокупности на равные части (см. Умножение , Деление ). Лишь в многовековом опыте сложилось представление об отвлечённом характере этих действий, о независимости количественного результата действия от природы предметов, составляющих совокупности, о том, что, например, два предмета и три предмета составят пять предметов независимо от природы этих предметов. Тогда стали разрабатывать правила действий, изучать их свойства, создавать методы для решения задач, т. е. начинается развитие науки о Ч. — арифметики . В первую очередь арифметика развивается как система знаний, имеющая непосредственно прикладную направленность. Но в самом процессе развития арифметики проявляется потребность в изучении свойств Ч. как таковых, в уяснении всё более сложных закономерностей в их взаимосвязях, обусловленных наличием действий. Начинается детализация понятия натурального Ч., выделяются классы чётных и нечётных Ч., простых и составных и т.д. Изучение глубоких закономерностей в натуральном ряду Ч. продолжается и составляет раздел математики, носящий название чисел теория .

  Натуральные Ч., кроме основной функции — характеристики количества предметов, несут ещё другую функцию — характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового Ч. (первый, второй и т.д.) тесно переплетается с понятием количественного Ч. (один, два и т.д.). В частности, расположение в ряд считаемых предметов и последующий их пересчёт с применением порядковых Ч. является наиболее употребительным с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов).

  Вопрос об обосновании понятия натурального Ч. долгое время в науке не ставился. Понятие натурального Ч. столь привычно и просто, что не возникало потребности в его определении в терминах каких-либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа — с другой, назрела необходимость обоснования понятия количественного натурального Ч. Отчётливое определение понятия натурального Ч. на основе понятия множества (совокупности предметов) было дано в 70-х гг. 19 в. в работах Г. Кантора . Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощными, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется как то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального Ч. как результата счёта предметов, составляющих данную совокупность. Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному считаемых предметов и предметов, составляющих «эталонную» совокупность (на ранних ступенях — пальцы рук и зарубки на палочке и т.д., на современном этапе — слова и знаки, обозначающие Ч.), Определение, данное Кантором, было отправным пунктом для обобщения понятия количеств. Ч. в направлении количественной характеристики бесконечных множеств.

  Другое обоснование понятия натурального Ч. базируется на анализе отношения порядка следования, которое, как оказывается, может быть аксиоматизировано. Построенная на этом принципе система аксиом была сформулирована Дж. Пеано .

  Следует отметить, что перенесение понятия порядкового Ч. на бесконечные совокупности [порядковые трансфинитные числа и более общо' — порядковые типы (см. Множеств теория )] резко расходится с обобщённым понятием количественного Ч.; это обусловлено тем, что количественно одинаковые (равномощные) множества могут быть упорядочены различными способами.



  Исторически первым расширением понятия Ч. является присоединение к натуральным Ч. дробных чисел. Введение в употребление дробных Ч. связано с потребностью производить измерения. Измерение какой-либо величины заключается в сравнении её с другой, качественно однородной с ней и принятой за единицу измерения. Это сравнение осуществляется посредством специфической для способа измерения операции «откладывания» единицы измерения на измеряемой величине и счёта числа таких откладываний. Так измеряется длина посредством откладывания отрезка, принятого за единицу измерения, количество жидкости — при помощи мерного сосуда и т.д. Однако не всегда единица измерения укладывается на измеряемой величине целое число раз, и этим обстоятельством, даже в самой примитивной практической деятельности, не всегда можно пренебречь. Здесь и содержится источник происхождения наиболее простых и «удобных» дробей, таких, как половина, треть, четверть и т.д. Но лишь с развитием арифметики как науки о Ч. созревает идея рассмотрения дробей с любым натуральным знаменателем и представление о дробном Ч. как о частном при делении двух натуральных Ч., из которых делимое не делится нацело на делитель (см. Дробь ).

  Дальнейшие расширения понятия Ч. обусловлены уже не непосредственными потребностями счёта и измерения, но явились следствием развития математики.

  Введение отрицательных чисел было с необходимостью вызвано развитием алгебры как науки, дающей общие способы решения арифметических задач, независимо от их конкретного содержания и исходных числовых данных. Необходимость введения в алгебру отрицательного Ч. возникает уже при решении задач, сводящихся к линейным уравнениям с одним неизвестным. Возможный отрицательный ответ в задачах такого рода может быть истолкован на примерах простейших направленных величин (таких, как противоположно направленные отрезки, передвижение в направлении, противоположном выбранному, имущество — долг, и т.д.). В задачах же, приводящихся к многократному применению действий сложения и вычитания, для решения без помощи отрицательного Ч. необходимо рассмотрение очень многих случаев; это может быть настолько обременительным, что теряется преимущество алгебраического решения задачи перед арифметическим. Т. о., широкое использование алгебраических методов для решения задач весьма затруднительно без пользования отрицательного Ч. В Индии ещё в 6—11 вв. отрицательные Ч. систематически применялись при решении задач и истолковывались в основном так же, как это делается в настоящее время.

  В европейской науке отрицательные Ч. окончательно вошли в употребление лишь со времени Р. Декарта , давшего геометрическое истолкование отрицательного Ч. как направленных отрезков. Создание Декартом аналитической геометрии, позволившее рассматривать корни уравнения как координаты точек пересечения некоторой кривой с осью абсцисс, окончательно стёрло принципиальное различие между положительными и отрицательными корнями уравнения, их истолкование оказалось по существу одинаковым.