Добавить в цитаты Настройки чтения

Страница 34 из 49



  Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; его же, Метод тригонометрических сумм в теории чисел, М., 1971; его же, Особые варианты метода тригонометрических сумм, М., 1976; Карацуба А. А., Основы аналитической теории чисел, М., 1975; Боревич З. И., Шафаревич И. Р., Теория чисел, 2 изд., М., 1972; Дэвенпорт Г., Мультипликативная теория чисел, пер. с англ., М., 1971; Чандрасекхаран К., Введение в аналитическую теорию чисел, пер. с англ., М., 1974; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Дирихле П. Г. Л., Лекции по теории чисел, пер. с нем., М.—Л., 1936; Титчмарш Е. К., Теория дзета-функции Римана, пер. с англ., М., 1953; Венков Б. А., Элементарная теория чисел, М.—Л., 1937.

  А. А. Карацуба.

Числа заполнения

Чи'сла заполне'ния в квантовой механике и квантовой статистике, числа, указывающие степень заполнения квантовых состояний частицами квантово-механической системы многих тождественных частиц . Для системы частиц с полуцелым спином (фермионов) Ч. з. могут принимать лишь два значения: 0 для свободных состояний и 1 для занятых, для системы частиц с целым спином (бозонов) — любые целые числа: 0, 1, 2,... Сумма всех Ч. з. должна быть равна числу частиц системы. С помощью Ч. з. можно описывать и числа элементарных возбуждений (квазичастиц ) квантовых полей; в этом случае их сумма не фиксирована. Средние по статистически равновесному состоянию Ч. з. для идеальных квантовых газов определяются функциями распределения Ферми — Дирака и Бозе — Эйнштейна [см. Статистическая физика , формула (19)]. Понятие Ч. з. лежит в основе метода квантования вторичного , который называется также «представлением Ч. з.».

  Д. Н. Зубарев.

Численное решение уравнений

Чи'сленное реше'ние уравне'ний, нахождение приближённых решений алгебраических и трансцендентных уравнений. Ч. р. у. сводится к выполнению арифметических операций над коэффициентами уравнений и значениями входящих в него функций и позволяет найти решения уравнений с любой наперёд заданной точностью. К Ч. р. у. сводятся многие задачи математики и её приложений. Хотя общие методы Ч. р. у. появились лишь в 17 в. (И. Ньютон ), но ещё Леонардо Пизанский (начало 13 в.) вычислил корень уравнения х 3 + 2x 2 + 10x = 20 с ошибкой, меньшей чем  В конце 16 в. И. Бюрги (Швейцария) вычислил корень уравнения 9 — 30x 2 + 27x 4 9x 6 + x 8 = 0, определяющего длину стороны правильного девятиугольника. Приблизительно в то же время Ф. Виет дал метод вычисления корней алгебраических уравнений, сходный с Ньютона методом .

  Численное решение алгебраических уравнений разбивается на следующие этапы: 1) выделение кратных корней, сводящее задачу к решению уравнения с простыми корнями; 2) определение границ, между которыми могут лежать корни уравнения; 3) разделение корней, т. е. указание промежутков, каждый из которых содержит не более одного простого корня (см. Штурма правило ); 4) грубое определение приближённого значения корня, выполняемое графически или каким-либо иным способом (например, при помощи изучения перемен знака левой части уравнения); 5) вычисление корня с заданной точностью. Наиболее распространёнными методами для этого являются методы ложного положения, метод Ньютона, Лобачевского метод , последовательных приближений метод , разложение в ряды и т.д.

  При численном решении трансцендентных уравнений ограничиваются этапами 4 и 5. О численном решении дифференциальных уравнений см. в ст. Приближённое решение дифференциальных уравнений.

  Лит.: Энциклопедия элементарной математики, кн. 2 — Алгебра, М.—Л., 1951; Курош А. Г., Курс высшей алгебры, 11 изд., М., 1975.



Численные методы

Чи'сленные ме'тоды в математике, методы приближённого решения математических задач, сводящиеся к выполнению конечного числа элементарных операций над числами. В качестве элементарных операций фигурируют арифметические действия, выполняемые обычно приближённо, а также вспомогательные операции — записи промежуточных результатов, выборки из таблиц и т.п. Числа задаются ограниченным набором цифр в некоторой позиционной системе счисления (десятичной, двоичной и т.п.). Т. о., в Ч. м. числовая прямая заменяется дискретной системой чисел (сеткой); функция непрерывного аргумента заменяется таблицей её значений в сетке (см. Таблицы математические ); операции анализа, действующие над непрерывными функциями, заменяются алгебраическими операциями над значениями функций в сетке. Ч. м. сводят решение математических задач к вычислениям, которые могут быть выполнены как вручную, так и с помощью вычислительных машин. Разработка новых Ч. м. и применение их в ЭВМ привели к возникновению вычислительной математики .

Числитель

Числи'тель дроби m/n , число m , показывающее, из скольких долей 1 /n составлена дробь .

Числительное

Числи'тельное, именная часть речи , общим лексическим значением которой является количество лиц или предметов. Грамматически Ч. характеризуется наличием категории падежа (в языках с развитой морфологией), отчасти рода (в языках, имеющих грамматический род, некоторые Ч. обладают родовыми формами, например в русском языке «два», «две»), отсутствием категории числа . По характеру выражения количественного значения выделяются определённо-количественные Ч. (два, десять и т.п.) и неопределённо-количественные Ч. (много, мало и т.п.). Особую группу образуют собирательные Ч., обозначающие количество как совокупность (двое, трое, пятеро, оба). По структуре различаются простые (два, три, одиннадцать), сложные (пятьдесят, семьдесят) и составные Ч. (тридцать шесть, сто десять). Многие учёные считают прилагательными т. н. порядковые Ч. и слово «один», имеющие различия в числе и синтаксический род. Слова «десяток», «сотня», «тысяча», «миллион» относят к существительным, поскольку они обладают всеми признаками этой части речи. В истории славянских языков некоторые Ч. произошли от других частей речи (например, «пять» — существительное). Ч. следует отличать от других слов с количественным значением.

  Лит.: Супрун А. Е., Славянские числительные, Минск, 1969; Виноградов В. В., Русский язык, 2 изд., М., 1972.

  В. А. Виноградов.