Страница 19 из 44
Важную роль в комплексном изучении Ф. сыграл сравнительно-исторический метод, привнесённый в физиологию И. М. Сеченовым , И. П. Павловым , Н. Е. Введенским . Трудами Л. А. Орбели и его школы было создано оригинальное направление, изучающее физиологические, биохимические и структурные основы эволюции Ф., — эволюционная физиология . В свою очередь исследования эволюции Ф. оказали влияние на изучение изменений Ф., наступающих в организме под влиянием различных факторов природного или искусственного происхождения (изменения климатических условий, двигательной активности, состава и свойств пищи, недостаток или избыток кислорода в воздухе, невесомость и многое др.), а также адаптации организма к условиям внешней среды (см. Экологическая физиология ). Изучение эволюции Ф. и особенно их приспособляемости к окружающей среде неразрывно связано с исследованием механизмов регуляции Ф. (см. Гуморальная регуляция , Гормональная регуляция , Нейро-гуморальная регуляция ). Важный этап в изучении Ф. — созданная К. М. Быковым и его школой концепция о взаимоотношениях коры больших полушарий головного мозга и внутренних органов (см. Кортико-висцеральные отношения ). Развитие этой концепции позволило вплотную подойти к разработке проблемы управления деятельностью висцеральных, т. е. внутренностных, систем организма, основанной на представлении об этой деятельности как особой форме поведения. Имеется в виду, что Ф. висцеральных систем, как и поведение организма в целом, всегда адаптивны, развиваются в достаточно строгой последовательности отдельных составляющих их основу реакций, а также обладают способностью к «обучению» (совершенствованию). Исследования в этом направлении имеют своей задачей познание механизмов и закономерностей регуляции Ф. организма с целью активного вмешательства в процесс нормализации его жизнедеятельности в случае отклонений от нормы, в том числе и в экстремальных условиях.
Лит. см. при ст. Физиология животных и человека.
В. Н. Черниговский,
К. А. Ланге.
Функции элементарные
Фу'нкции элемента'рные, см. Элементарные функции .
Функций теория
Фу'нкций тео'рия, раздел математики, в котором изучаются общие свойства функций . Ф. т. распадается на две части: теория функций действительного переменного и теория функций комплексного переменного.
В «классическом» математическом анализе основным объектом изучения являются непрерывные функции , заданные на (конечных или бесконечных) интервалах и обладающие более или менее высокой степенью гладкости. Однако уже со 2-й половины 19 в. развитие математики всё настоятельнее стало требовать систематического изучения функций более общего типа. Основной причиной этого является то, что предел последовательности непрерывных функций может быть разрывен. Иными словами, класс непрерывных функций оказывается незамкнутым относительно важнейшей операции анализа — предельного перехода. В связи с этим функции, определяемые при помощи таких классических средств, как тригонометрические ряды, часто оказываются разрывными или недифференцируемыми. По той же причине могут быть разрывны производные непрерывных функций и т.п. Наконец, дифференциальные уравнения, возникающие при рассмотрении физических задач, иногда не имеют решений в классе достаточно гладких функций, но имеют их в более широких классах функций (если надлежащим образом сообщить само понятие решения). Весьма важно, что именно эти обобщённые решения (см. Обобщённые функции ) и дают ответ на исходную физическую задачу. Эти и аналогичные им обстоятельства стимулировали создание Ф. т. действительного переменного.
Отдельные частные факты Ф. т. действительного переменного были открыты ещё в 19 в. (существование рядов непрерывных функций с разрывной суммой, примеры нигде не дифференцируемых непрерывных функций, не интегрируемых функций и т.п.). Однако эти факты воспринимались обычно как «исключения из правил» и не объединялись никакими общими схемами. Лишь в начале 20 в., когда в основу изучения функций были положены методы множеств теории , стала развиваться систематически современная Ф. т. действительного переменного.
Можно различить три направления в Ф. т. действительного переменного.
1) Метрическая Ф. т., где свойства функций изучаются при помощи меры (см. Мера множества ) тех множеств, на которых эти свойства имеют место. В метрической Ф. т. с общих точек зрения изучаются интегрирование и дифференцирование функций (см. Интеграл , Дифференциал , Производная ), различными способами обобщается понятие сходимости функциональных последовательностей, исследуется строение разрывных функций весьма широкого типа и т.п. Важнейшим классом функций, изучаемым в метрической Ф. т., являются измеримые функции .
2) Дескриптивная Ф. т., в которой основным объектом изучения является операция предельного перехода (см. Бэра классификация ).
3) Конструктивная Ф. т., изучающая вопросы изображения произвольных функций при помощи надлежащих аналитических средств (см. Приближение и интерполирование функций ).
О Ф. т. комплексного переменного см. Аналитические функции .
Лит.: Александров П. С., Введение в общую теорию множеств и функций, М. — Л., 1948; Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 4 изд., М., 1976.
Функционал
Функциона'л, математический понятие, первоначально возникшее в вариационном исчислении и означающее там переменную величину, зависящую от функции (линии) или от нескольких функций. Примерами Ф. являются площадь, ограниченная замкнутой кривой заданной длины, работа силового поля вдоль того или иного пути и т.д. С развитием функционального анализа термин «Ф.» стал пониматься в более широком смысле, а именно: как числовая функция, определённая на некотором линейном пространстве. См. Функциональный анализ .