Страница 123 из 130
Если достаточно велика для ионизации атомов и молекул газа, то происходит фотоионизация. Когда эта энергия поглощается электронами жидкости или твёрдого тела, если последние могут достичь поверхности тела и, преодолев существующий на ней потенциальный барьер , выйти в вакуум или др. среду, то возникает фотоэлектронная эмиссия . Фотоэлектронную эмиссию часто называют внешним фотоэффектом . В отличие от него, все Ф. я., обусловленные переходами электронов из связанных состояний в квазисвободные внутри твёрдого тела, объединяются термином фотоэффект внутренний .
Следует отличать Ф. я. от электрических явлений, возникающих при нагревании тел электромагнитным излучением. Все Ф. я. обусловлены нарушением равновесия между системой электронов, с одной стороны, и атомом, молекулой или кристаллической решёткой – с другой. Неравновесное состояние электронной системы тела сохраняется некоторое время после поглощения фотона, в течение которого и могут наблюдаться Ф. я. Затем избыточная энергия электронов рассеивается (например, передаётся кристаллической решётке) и в теле устанавливается равновесие, соответствующее более высокой температуре. Ф. я. исчезают, но из-за нагревания тела в нём могут возникнуть явления, по внешним признакам аналогичные Ф. я.: болометрический эффект (изменение электропроводности), пироэлектрический эффект (см. Пироэлектрики ), термоэлектронная эмиссия , термоэдс и др. термоэлектрические явления .
В полупроводниках и диэлектриках электронов проводимости мало, поэтому уже небольшого числа фотонов достаточно для заметного увеличения количества электронов или их энергии. Теплоёмкость же кристаллической решётки тел очень велика по сравнению с теплоёмкостью «газа» электронов проводимости. Вследствие этого в телах не очень малых размеров Ф. я. возникают при поглощении в них гораздо меньшей энергии электромагнитного излучения, чем та, которая необходима для наблюдения термоэлектрических явлений. Инерционность Ф. я. во много раз меньше инерционности термоэлектрических явлений и (в отличие от последних) не зависит от размеров тел и качества теплового контакта их с др. телами.
В металлах из-за очень высокой электропроводности внутренний фотоэффект не наблюдается и возникает только фотоэлектронная эмиссия.
Лит.: Рыбкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Фотоэлектронные приборы, М., 1965; Панков Ж., Оптические процессы в полупроводниках, пер. с англ., М., 1973; Соммер А., Фотоэмиссионные материалы, пер. с англ., М., 1973.
Т. М. Лифшиц.
Фотоэлектрический генератор
Фотоэлектри'ческий генера'тор, устройство, непосредственно преобразующее энергию оптического излучения в электрическую на основе явления фотоэффекта внутреннего в полупроводниках. Преобразуемой энергией является энергия солнечной радиации (см. Солнечная батарея ), инфракрасного излучения нагретых тел либо лазерного излучения (в любом диапазоне волн).
Обычно Ф. г. конструктивно выполняют в виде плоской панели, собранной из отдельных фотоэлементов , причём толщина полупроводника не превышает 0,2–0,3 мм. Кпд серийно выпускаемых Ф. г. 10–12%, у лучших образцов он достигает 15–18%. Ф. г. способны преобразовывать энергию излучения сверхвысокой плотности до нескольких квт/см2 . Отдельные элементы Ф. г. могут быть соединены между собой как последовательно, так и параллельно; при этом от генератора можно получать соответственно малые токи при большом напряжении (до нескольких кв ) или большие токи (до нескольких сотен а ) при малом напряжении.
Достоинства Ф. г. – портативность, практически неограниченный срок службы и хранения, отсутствие движущихся частей, простота обслуживания, отсутствие вредных для окружающей среды выделений; их недостаток – относительно высокая стоимость. Ф. г. используют в качестве автономных источников энергопитания аппаратуры космических летательных аппаратов, радиоприёмников и приёмно-передающих радиостанций, маяков и навигационных указателей, устройств антикоррозионной защиты нефте- и газопроводов и т.п. Разработаны проекты создания солнечных электростанций большой мощности на основе Ф. г., снабженных концентраторами солнечного излучения.
Лит.: Васильев А. М., Ландсман А. П., Полупроводниковые фотопресбразователи, М., 1971.
М. М. Колтун.
Фотоэлектрический гид
Фотоэлектри'ческий гид в астрономии, вспомогательное фотоэлектрическое устройство, автоматически выполняющее гидирование телескопа. Ф. г. автоматически удерживает в поле зрения телескопа наблюдаемое небесное светило, движущееся вследствие видимого суточного вращения небесной сферы или реального его движения относительно звёзд.
Фотоэлектрический усилитель
Фотоэлектри'ческий усили'тель, усилитель постоянного тока (напряжения), действие которого основано на увеличении тока в электрической цепи при освещении включенного в неё светочувствительного элемента (фоторезистора , фотоэлемента ). Ток в цепи светочувствительного элемента зависит от яркости источника света и от площади освещаемой поверхности светочувствительного элемента. Соответственно этому Ф. у. подразделяются на две группы: к первой относятся фотоэлектронакальные, фотоэлектролюминесцентные и фотоэлектрогазоразрядные Ф. у., применяемые в качестве фотоэлектрических элементов автоматики для регулирования и регистрации различных процессов (рис. , а, б, в); во вторую входят фотоэлектрооптические усилители (рис. , г) и фотогальванометрические компенсационные усилители, используемые в качестве элементов точных электроизмерительных устройств.
Принципиальные схемы фотоэлектрических усилителей с изменяющейся яркостью источника света (а — фотоэлектронакальный, б — фотоэлектролюминесцентный, в — фотоэлектрогазоразрядный) и с изменяющейся площадью освещаемой поверхности светочувствительных элементов (г — фотоэлектрооптический): U(I)вх — усиливаемое напряжение (ток); U(I)вых — выходной сигнал; Е — вспомогательный источник тока (напряжения); С — силитовый стержень; Ф — фоторезистор; R — резистор; 1 — люминисцентный источник света; 2 — фотопроводник; ГЛ — газоразрядная лампа; Л — источник света; О — фокусирующая линза; К — конденсор; Р — решетчатые диафрагмы; ФЭ — фотоэлемент; Г — гальванометр; З — зеркало гальванометра.