Страница 25 из 190
Высочайшей точности достигли измерения амплитуды колебаний макроскопических тел. С помощью радиотехнических и оптических датчиков можно регистрировать механические колебания с амплитудой порядка 10-15 см (имеется возможность повысить этот предел до 10-16 –10-19 см ).
Для исследования структуры кристаллов и органических молекул применяются высокоточные автоматические рентгеновские и нейтронные дифрактометры, в сотни тыс. раз сократившие время расшифровки структур. В структурных исследованиях применяются также электронные микроскопы большой разрешающей силы. Нейтронография позволяет изучать и магнитную структуру твёрдых тел.
Для исследования структуры и распределения электронной плотности в веществе успешно применяются электронный парамагнитный резонанс (открыт Е. К. Завойским в 1944), ядерный магнитный резонанс (открыт Э. Пёрселлом и Ф. Блохом в 1946), Мёссбауэра эффект (открыт Р. Л. Мёссбауэром в 1958). Совершенствуется исследование структуры атомов и молекул органических и неорганических веществ по их спектрам излучения и поглощения в широком диапазоне частот (в т. ч. с применением лазерного излучения; см. Спектроскопия лазерная ).
В гидроакустике открыто и исследовано явление сверхдальнего распространения звука в морях и океанах – на расстояния в тысячи км (амер. учёные М. Ивинг, Дж. Ворцель, 1944, и независимо сов. физики Л. М. Бреховских , Л. Д. Розенберг и др., 1946).
В последнее десятилетие развиваются акустические методы исследования твёрдых тел, основанные на применении ультразвуковых и гиперзвуковых волн (см. Ультразвук , Гиперзвук ), а также поверхностных акустических волн.
Быстрое развитие Ф. полупроводников совершило переворот в радиотехнике и электронике. Полупроводниковые приборы вытеснили электровакуумные лампы. Резко уменьшились и стали надёжнее радиотехнические устройства и вычислительные машины, существенно уменьшилась потребляемая ими мощность. Появились интегральные схемы, сочетающие на одном небольшом (в десятки мм 2 ) кристалле тысячи и более электронных элементов. Процесс последовательной микроминиатюризации радиоэлектронных приборов и устройств привёл к созданию на нескольких кристаллах т. н. микропроцессоров, выполняющих операционные функции ЭВМ. Небольшие вычислительные машины изготавливаются на одном кристалле.
ЭВМ стали неотъемлемой частью физических исследований и применяются как для обработки экспериментальных данных, так и в теоретических расчётах, особенно тех, которые ранее были неосуществимыми из-за огромной трудоёмкости.
Большое значение как для самой науки, так и для практических применений имеет исследование вещества при экстремальных условиях: при очень низких или очень высоких температурах, сверхвысоком давлении или глубоком вакууме, сверхсильных магнитных полях и т.д.
Высокий и сверхвысокий вакуум создаётся в электронных приборах и ускорителях для того, чтобы избежать столкновений ускоряемых частиц с молекулами газа. Исследование свойств поверхностей и тонких слоев вещества в сверхвысоком вакууме открыло новый раздел Ф. твёрдого тела. Эти исследования очень важны, в частности, в связи с освоением космического пространства.
V. Некоторые нерешенные проблемы физики
Физика элементарных частиц.
Наиболее фундаментальной проблемой Ф. было и остаётся исследование материи на самом глубоком уровне – уровне элементарных частиц. Накоплен огромный экспериментальный материал по взаимодействиям и превращениям элементарных частиц, произвести же теоретическое обобщение этого материала с единой точки зрения пока не удаётся. Либо недостаёт необходимых фактов, либо – идеи, способной пролить свет на проблему строения и взаимодействия элементарных частиц. Остаётся нерешенной задача о теоретическом определении спектра масс элементарных частиц. Возможно, для решения этой проблемы и устранения бесконечностей в квантовой теории поля необходимо введение некоторой фундаментальной длины , которая ограничивала бы применимость обычных представлений о пространстве-времени как о непрерывной сущности. До расстояний порядка 10-15 см и соответственно времён t ~ l/c ~ 10-25 сек обычные пространственно-временные соотношения, по-видимому, справедливы, но на меньших расстояниях, возможно, они нарушаются. Делаются попытки введения фундаментальной длины в единой теории поля (Гейзенберг и др.) и в различных вариантах квантования пространства-времени . Однако пока эти попытки не привели к ощутимым результатам.
Не решена задача построения квантовой теории тяготения. Только намечается возможность сведения воедино четырёх фундаментальных взаимодействий.
Астрофизика . Развитие Ф. элементарных частиц и атомного ядра позволило приблизиться к пониманию таких сложных проблем, как эволюция Вселенной на ранних стадиях развития, эволюция звёзд и образование химических элементов. Однако, несмотря на огромные достижения, перед современной астрофизикой стоят и нерешенные проблемы. Остаётся неясным, каково состояние материи при огромных плотностях и давлениях внутри звёзд и «чёрных дыр». Не выяснена физическая природа квазаров и радиогалактик, причины вспышек сверхновых звёзд и появления всплесков g-излучения. Непонятно, почему попытки обнаружения солнечных нейтрино, которые должны рождаться в недрах Солнца при термоядерных реакциях, к успеху не привели (см. Нейтринная астрономия ). Не выявлен полностью механизм ускорения заряженных частиц (космических лучей) при вспышках сверхновых звёзд и механизм излучения электромагнитных волн пульсарами и т.д. Наконец, положено лишь начало решению проблемы эволюции Вселенной в целом. Что было на ранних стадиях эволюции Вселенной и какова её судьба в дальнейшем? Сменится ли когда-нибудь наблюдаемое расширение Вселенной её сжатием? На все эти вопросы пока ответов нет.
Несомненно, что наиболее фундаментальные проблемы современной Ф. связаны с элементарными частицами и проблемой строения и развития Вселенной. Здесь предстоит открыть новые законы поведения материи в необычных условиях – при сверхмалых пространственно-временных расстояниях в микромире и сверхбольших плотностях в начале расширения Вселенной. Все др. проблемы имеют более частный характер и связаны с поисками путей эффективного использования основных законов для объяснения наблюдаемых явлений и предсказания новых.
Физика ядра. После создания протонно-нейтронной модели ядра был достигнут большой прогресс в понимании структуры атомных ядер, построены различные приближённые ядерные модели. Однако последовательные теории атомного ядра (подобной теории атомных оболочек), позволяющей рассчитать, в частности, энергию связи нуклонов в ядре и уровни энергии ядра, пока нет. Успех в этом направлении может быть достигнут лишь после построения теории сильных взаимодействий.
Экспериментальное исследование взаимодействия нуклонов в ядре – ядерных сил – сопряжено с очень большими трудностями из-за предельно сложного характера этих сил. Они зависят от расстояния между нуклонами, от скоростей нуклонов и ориентаций их спинов.
Значительный интерес представляет возможность экспериментального обнаружения долгоживущих элементов с атомными номерами около 114 и 126 (т. н. островов стабильности), которые предсказываются теорией.