Страница 15 из 68
Изменение температуры фазового перехода (кипения, плавления и др.) при бесконечно малом изменении давления определяется Клапейрона – Клаузиуса уравнением . Графики, изображающие зависимость одних термодинамических переменных от других в условиях Ф. р., называются линиями (поверхностями) равновесия, а их совокупность – диаграммами состояния . Линия Ф. р. может либо пересечься с другой линией равновесия (тройная точка), либо кончиться критической точкой .
В твёрдых телах из-за медленности процессов диффузии , приводящих к термодинамическому равновесию, возникают неравновесные фазы, которые могут существовать наряду с равновесными. В этом случае правило фаз может не выполняться. Правило фаз не выполняется также и в том случае, когда на кривой равновесия фазы не отличаются друг от друга (см. Фазовые переходы ).
В массивных образцах в отсутствии дальнодействующих сил между частицами число границ между равновесными фазами минимально. Например, в случае двухфазного равновесия имеется лишь одна поверхность раздела фаз. Если хотя бы в одной из фаз существует дальнодействующее поле (электрическое или магнитное), выходящее из вещества, то энергетически более выгодны равновесные состояния с большим числом периодически расположенных фазовых границ (домены ферромагнитные и сегнетоэлектрические, промежуточное состояние сверхпроводников) и таким расположением фаз, чтобы дальнодействующее поле не выходило из тела. Форма границы раздела фаз определяется условием минимальности поверхностной энергии . Так, в двухкомпонентной смеси при условии равенства плотностей фаз граница раздела имеет сферическую форму. Огранка кристаллов определяется теми плоскостями, поверхностная энергия которых минимальна.
Лит.: Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М., Курс общей физики. Механика и молекулярная физика, 2 изд., М., 1969; Френкель Я. И., Статистическая физика, М. – Л., 1948.
В. Л. Покровский.
Фазовой плоскости метод
Фа'зовой пло'скости ме'тод, графоаналитический метод исследования динамических систем , описываемых уравнениями вида:
,
,
где х и у – переменные состояния системы, Р (х, у ) и Q (х, у ) – функции, удовлетворяющие условиям теорем существования и единственности решений, t – время (независимая переменная). Поведение такой системы можно представить геометрически на плоскости в прямоугольных декартовых координатах. При таком представлении каждому состоянию динамической системы однозначно соответствует точка на плоскости с координатами х, у и, наоборот, каждой точке плоскости соответствует одно, и только одно состояние исследуемой динамической системы. Плоскость Оху называется фазовой плоскостью. Изменение состояния системы отображается на фазовой плоскости движением точки, которую называют фазовой, изображающей или представляющей точкой. Траектория, по которой движется изображающая точка, называется фазовой траекторией; скорость и направление её движения определяются вектором фазовой скорости {Р, Q }. Существенно, что через каждую точку фазовой плоскости проходит только одна фазовая траектория. Совокупность фазовых траекторий называется фазовым портретом системы и отображает совокупность всех возможных сочетаний системы и типы возможных движений в ней.
На фазовой плоскости обычно выделяют следующие три типа фазовых траекторий: особые точки, или положения равновесия, определяемые в результате решения системы уравнений
Р (х, у ) = 0, Q (х, y ) = 0;
изолированные замкнутые траектории, отвечающие периодическим движениям в системе; сепаратрисы, разделяющие фазовую плоскость на области, заполненные траекториями разных типов. Ф. п. м. состоит в построении фазового портрета системы и последующего анализа этого портрета. Метод позволяет определить число, типы и характер особых точек, изолированных замкнутых траекторий и сепаратрис и даёт возможность по виду фазовых траекторий наглядно представить всю совокупность движений, возникающих в динамической системе при всевозможных начальных условиях. Особые точки классифицируют по характеру фазовых траекторий в их окрестности: основные типы особых точек изображены на рис. 1 . Изолированные замкнутые траектории (предельные циклы) классифицируют по характеру их устойчивости (рис. 2 ).
В сочетании с аналитическими методами Ф. п. м. позволяет получать количественные оценки решений дифференциальных уравнений, описывающих динамическую систему, например оценивать длительность перехода изображающей точки из одного состояния в другое (т. е. продолжительность переходного процесса), определять период и «амплитуду» периодического движения и т.п. Теоретические основы Ф. п. м. разработаны А. Пуанкаре . Ф. п. м. – один из методов качественой теории динамических систем; он широко используется в теории колебаний, теории автоматического управления, в электротехнике и механике.
Лит.: Пуанкаре А. О., О кривых, определяемых дифференциальными уравнениями, пер. с франц., М. – Л., 1947; Немыцкий В, В., Степанов В. В., Качественная теория дифференциальных уравнений, 2 изд., М. – Л., 1949; Андронов А. А., Витт А. А., Хайкин С. Э., Теория колебаний, 2 изд., М., 1959; Качественная теория динамических систем второго порядка, М., 1966; Емельянов С. В., Системы автоматического управления с переменной структурой, М., 1967; Марчуков Б. А., Проектирование систем управления методами фазовой плоскости, М., 1976.
С. К. Коровин, Н. Н. Миловидов.
Рис. 1. Фазовые траектории в окрестности особых точек следующих типов: а — устойчивый узел; б — неустойчивый узел; в — устойчивый фокус; г — неустойчивый фокус; д — седло; е — центр.
Рис. 2. Фазовые траектории в окрестности различных предельных циклов, изображенных в виде замкнутых кривых; а — устойчивого; б — неустойчивого; в, г — полуустойчивых.
Фазово-контрастная микроскопия
Фа'зово-контра'стная микроскопи'я, метод микроскопического исследования, основанный на получении с помощью специальных приспособлений контрастного изображения различающихся по плотности структур бесцветных прозрачных микрообъектов, например живых микроорганизмов и тканевых культур. Подробнее см. в ст. Микроскоп , раздел Методы освещения и наблюдения (микроскопия).