Добавить в цитаты Настройки чтения

Страница 4 из 19



  В. А. Виноградов.

Ударная бригада

Уда'рная брига'да, см. в ст. Ударничество .

Ударная волна

Уда'рная волна', скачок уплотнения, распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит резкое увеличение плотности, давления и скорости вещества. У. в. возникают при взрывах, при сверхзвуковых движениях тел (см. Сверхзвуковое течение ), при мощных электрических разрядах и т.д. Например, при взрыве ВВ образуются высоконагретые продукты взрыва, обладающие большой плотностью и находящиеся под высоким давлением. В начальный момент они окружены покоящимся воздухом при нормальной плотности и атмосферном давлении. Расширяющиеся продукты взрыва сжимают окружающий воздух, причём в каждый момент времени сжатым оказывается лишь воздух, находящийся в определённом объёме; вне этого объёма воздух остаётся в невозмущённом состоянии. С течением времени объём сжатого воздуха возрастает. Поверхность, которая отделяет сжатый воздух от невозмущённого, и представляет собой У. в. (или, как говорят, — фронт У. в.).

  Классический пример возникновения и распространения У. в. — опыт по сжатию газа в трубе поршнем. Если поршень вдвигается в газ медленно, то по газу со скоростью звука а бежит акустическая (упругая) волна сжатия. Если же скорость поршня не мала по сравнению со скоростью звука, возникает У. в. Скорость распространения У. в. по невозмущённому газу uВ = (x ф 2 – x ф1 ) /(t 2 –t 1 ) (рис. 1 ) больше, чем скорость движения частицы газа (так называемая массовая скорость), которая совпадает со скоростью поршня u = (x П 2 – x П 1 ) /(t 2 –t 1 ). Расстояния между частицами в У. в. меньше, чем в невозмущённом газе, вследствие сжатия газа. Если поршень сначала вдвигают в газ с небольшой скоростью и постепенно ускоряют, то У. в. образуется не сразу. Вначале возникает волна сжатия с непрерывными распределениями плотности r и давления р. С течением времени крутизна передней части волны сжатия нарастает, так как возмущения от ускоренно движущегося поршня догоняют её и усиливают, вследствие чего возникает резкий скачок всех гидродинамических величин, то есть У. в.

  Законы ударного сжатия. При прохождении газа через У. в. его параметры меняются очень резко и в очень узкой области. Толщина фронта У. в. имеет порядок длины свободного пробега молекул, однако при многих теоретических исследованиях можно пренебречь столь малой толщиной и с большой точностью заменить фронт У. в. поверхностью разрыва, считая, что при прохождении через неё параметры газа изменяются скачком (отсюда название «скачок уплотнения»). Значения параметров газа по обе стороны скачка связаны следующими соотношениями, вытекающими из законов сохранения массы, импульса и энергии:

            r 1 u1 = r u р 1 + r 1 u1 2 = р + r u 2 ,



            e1 + р 1 / r 1 + u1 2 / 2 = e + р 0 / r + u 2 / 2,        (1)

где p1 — давление, r1 — плотность, e1 — удельная внутренняя энергия, u1 скорость вещества за фронтом У. в. (в системе координат, в которой У. в. покоится), а p , r , e , u0 — те же величины перед фронтом. Скорость u втекания газа в разрыв численно совпадает со скоростью распространения У. в. u В по невозмущённому газу. Исключая из равенств (1) скорости, можно получить уравнения ударной адиабаты:

 e1 — e = (p1 + p ) (V — V1 ),

 w1 — w = (p1 — p ) (V + V1 ),          (2)

 где V = 1/r — удельный объём, w = e + p / r удельная энтальпия. Если известны термодинамические свойства вещества, то есть функции e(р ,r) или w(p, r), то ударная адиабата даёт зависимость конечного давления p 1 от конечного объёма V 1 при ударном сжатии вещества из данного начального состояния p , V , то есть зависимость p 1 = H (V 1 , p , V ).

  При переходе через У. в. энтропия вещества S меняется, причём скачок энтропии S 1 — S для данного вещества определяется только законами сохранения (1), которые допускают существование двух режимов: скачка сжатия (r1 > r , p 1 > p ) и скачка разрежения (r1 < r , p 1 < p ). Однако в соответствии со вторым началом термодинамики реально осуществляется только тот режим, при котором энтропия возрастает. В обычных веществах энтропия возрастает только в У. в. сжатия, поэтому У. в. разрежения не реализуется (теорема Цемплена).