Страница 33 из 261
Тейлерии
Тейле'рии (Theileria), род паразитических простейших семейства Theileriidae. Паразитируют в клетках ретикуло-эндотелиальной системы и в эритроцитах животных. Описан ряд видов Т., вызывающих заболевание тейлериоз : у крупного рогатого скота — Т. a
Лит. см. при ст. Тейлериоз .
И. В. Абрамов.
Рис. 1. Theileria a
Рис. 2. Theileria a
Тейлериоз
Тейлерио'з, трансмиссивная болезнь крови рогатого скота, вызываемая простейшими рода тейлерий . Распространена во многих странах Западной Европы, Азии и Африки. В СССР Т. встречается в республиках Средней Азии и в Казахстане, Закавказье и на Северном Кавказе. Возбудители Т. специфичны по отношению к видам хозяев, у которых они паразитируют. Переносчики возбудителей Т. — в основном клещи рода гиаломма. Болезнь наблюдается с марта — апреля по октябрь — ноябрь с максимальным количеством заболевших в июне — июле. Инкубационный (скрытый) период 9—12 сут. У больных животных увеличиваются лимфатические узлы, появляются высокая температура, анемия, расстройства сердечно-сосудистой системы и пищеварительного тракта. Болезнь длится при остром течении от 4 до 7, при подостром — около 16 сут. Смертность среди больных 60—80% и выше. Лечение: противомалярийные препараты — хиноцид, бигумаль, плазмоцид и симптоматические средства.
Лит.: Колабский Н. А., Тейлериозы животных, Л., 1968.
Тейлор Брук
Те'йлор (Taylor) Брук (18.8.1685, Эдмонтон, Мидлсекс, — 29.12.1731, Лондон), английский математик, член Лондонского королевского общества (1712). Нашёл в 1712 общую формулу для разложения функций в степенные ряды (см. Тейлора ряд ), которую опубликовал в 1715 в работе «Methodus incrementorum directa et inversa». В этом же труде Т. положил начало математическому изучению задачи о колебании струны. Ему принадлежат заслуги в разработке теории конечных разностей. Т. — также автор работ о перспективе, центре качания, полёте снарядов, взаимодействии магнитов, капиллярности и др. К концу жизни занимался вопросами философии.
Лит.: История математики с древнейших времен до начала XIX столетия, т. 2, М., 1970.
Тейлор Джефри Инграм
Те'йлор (Taylor) Джефри Инграм (7.3.1886, Лондон, — 27.6.1975, Кембридж), английский учёный в области механики, член Лондонского королевского общества (1919). Окончил Кембриджский университет (1910). Метеоролог в одной из арктических экспедиций (1913). С 1919 в Кембриджском университете. Профессор по научной работе Лондонского королевского общества (1923—51). В 1944—45 работал в Лос-Аламосской лаборатории (США) над проблемой ядерного взрыва. Основные труды по механике сплошных сред (включая экспериментальные исследования). Т. внёс фундаментальный вклад в теорию турбулентности: развил теорию устойчивости течений вязкой жидкости, теорию турбулентной диффузии, создал полуэмпирическую теорию турбулентности, исследовал однородную и изотропную турбулентность. Т. принадлежат основополагающие работы по теории дислокаций. Изучал также аэродинамику самолёта и парашюта, околозвуковое обтекание тел, волны в жидкости, вопросы метеорологии, исследовал проблему плавания микроорганизмов и др. Иностранный член АН СССР (1966) и многих др. академий мира.
Соч.: Scientific papers, v. I—4, Camb,, 1958—71; в рус. пер.— О переносе вихрей и тепла при турбулентном движении жидкостей, в сборнике: Проблемы турбулентности, М.— Л., 1936; Результаты исследований движения при больших скоростях, в сборнике: Газовая динамика, М.— Л., 1939; Современное состояние теории турбулентной диффузии, в сборнике: Атмосферная диффузия и загрязнение воздуха, М., 1962.
Лит.: Southwell R. V., G. I. Taylor; a biographical note, в сборнике: Surveys in mechanics, Camb., 1956; McGraw — Hill Modern Men of Science, v. 2, [N. Y., 1968].
Дж. И. Тейлор.
Тейлора ряд
Те'йлора ряд, степенной ряд вида
, (1)
где f (x ) — функция, имеющая при х = а производные всех порядков. Во многих практически важных случаях этот ряд сходится к f (x ) на некотором интервале с центром в точке а:
(2)
(эта формула опубликована в 1715 Б. Тейлором ). Разность Rn (x ) = f (x ) — Sn (x ), где Sn (x ) — сумма первых n + 1 членов ряда (1), называется остаточным членом Т. р. Формула (2) справедлива, если . Т. р. можно представить в виде
,
применимом и к функциям многих переменных.
При а = 0 разложение функции в Т. р. (исторически неправильно называемый в этом случае рядом Маклорена; см. Маклорена ряд ) принимает вид:
,
в частности:
(3)
(4)
(5)
(6)
.(7)