Страница 4 из 61
Как точное П. р. появляется в теории случайных процессов. Например, при расчёте нагрузки линий связи обычно предполагают, что количества вызовов, поступивших за непересекающиеся интервалы времени, суть независимые случайные величины, подчиняющиеся П. р. с параметрами, значения которых пропорциональны длинам соответствующих интервалов времени (см. Пуассоновский процесс).
В качестве оценки неизвестного параметра l по n наблюдённым значениям независимых случайных величин X1,..., Xn используется их арифметическое среднее X = (X1 +... + Xn)/n, поскольку эта оценка лишена систсматической ошибки и её квадратичное отклонение минимально (см. Статистические оценки).
Лит.: Гнеденко Б. В., Курс теории вероятностей, 5 изд., М. — Л., 1969; Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., т. 1, М., 1967.
Рис. к ст. Пуассона распределение.
Пуассона теорема
Пуассо'на теоре'ма, 1) теорема теории вероятностей, описывающая поведение частоты появления некоторого события в последовательности независимых испытаний — частный случай закона больших чисел (точную формулировку см. в ст. Больших чисел закон). 2) Одна из предельных теорем теории вероятностей. П. т. позволяет приближённо оценивать вероятность данного числа появлений маловероятного события при большом числе независимых испытаний (см. Пуассона распределение).
Обе теоремы установлены С. Д. Пуассоном в 1837.
Пуассона уравнение
Пуассо'на уравне'ние, уравнение с частными производными вида Du = f, где D —оператор Лапласа:
При n = 3 этому уравнению удовлетворяет потенциал u (х, у, z) объёмных масс, распределённых с плотностью f (x, у, z)/4p (в областях, где f = 0 потенциал u удовлетворяет уравнению Лапласа), а также потенциал объёмно распределённых электрических зарядов. При этом плотность распределения f должна удовлетворять известным требованиям гладкости (например, условию непрерывности частных производных). Если функция f отлична от нуля лишь в конечной области G, ограничена и имеет непрерывные частные производные первого порядка, то при n = 2 частное решение П. у. имеет вид:
а при n = 3:
где r (А, Р) — расстояние между переменной точкой интегрирования А и некоторой точкой Р. В более подробной записи
V (х, у, z) =
Решение краевых задач для П. у. сводится подстановкой к решению краевых задач для уравнения Лапласа Dw = 0.
П. у. впервые (1812) было изучено С. Д. Пуассоном.
Пуассона формула суммирования
Пуассо'на фо'рмула сумми'рования, формула для вычисления суммы ряда вида
Если
— Фурье преобразование (несколько иначе, чем обычно, нормированное) функции F (x), то
(m и n — целые). Это и есть П. ф. с.; она может быть записана в более общем виде: если l > 0, m > 0, lm = 1 и 0 £ t < 1, то
Для справедливости этой формулы достаточно, чтобы в каждом конечном интервале F (x) имела ограниченную вариацию, и для х ® + ¥ и х ® — ¥ выполнялось одно из условий: 1) F (x) — монотонна и абсолютно интегрируема; 2) F (x) — интегрируема и обладает абсолютно интегрируемой производной. П. ф. с. позволяет в ряде случаев заменить вычисление суммы ряда вычислением суммы др. ряда, сходящегося быстрее первоначального.
Пуассоновский поток
Пуассо'новский пото'к, то же, что пуассоновский процесс. Этот термин используют, как правило, в массового обслуживания теории.
Пуассоновский процесс