Добавить в цитаты Настройки чтения

Страница 2 из 11



  В П. р. с. первой группы могут применяться как элементы универсального назначения, которые могут использоваться для реализации нескольких элементарных логических функций, так и специализированные элементы, выполняющие только одну определённую функцию. Применение П. р. с. с элементами второго вида позволяет строить более простые, дешёвые и компактные устройства, но такие системы имеют большую номенклатуру элементов, что не всегда удобно при построении реальных управляющих устройств. П. р. с. из универсальных пневмореле более гибкие и допускают взаимозаменяемость элементов, но при этом каждое управляющее устройство имеет некоторую аппаратурную избыточность, оно больше по габаритам и дороже устройств со специализированными пневмореле. Большинство П. р. с. состоит из универсального пневмореле и пневмоэлемента, реализующего логическую операцию «или». П. р. с. на проточных (струйных) элементах строится не на отдельных элементах, а на модулях, при помощи которых реализуются уже не только элементарные, но и более сложные логические функции. В СССР наибольшее распространение получили комбинированные струйно-мембранные системы (первая такая система — «Цикл» — была создана в 1972), которые рационально сочетают в себе струйные модули (для реализации сложных логических функций и различных схем запоминания) и мембранные усилители (при помощи которых формируются выходные пневмосигналы, восстанавливаются уровни сигналов, нестандартные сигналы преобразуются в стандартные, реализуются простейшие логические функции).

  Лит.: Берендс Т. К., Таль А. А., Пневматические релейные схемы, «Автоматика и телемеханика», 1959, № 11; их же, О струйно-мембранной релейной технике, там же, 1968, № 7; Агрегатное построение пневматических систем управления, М., 1973.

  Т. К. Берендс.

Пневматическая химия

Пневмати'ческая хи'мия, название химии газов, применявшееся в конце 18 — начале 19 вв.; сохранилось лишь как исторический термин, охватывающий ранний период химического исследования газов — от 1-й половины 17 в. до конца 18 в. В этот период был установлен закон зависимости объёма газа от давления (Р. Бойль), открыты и изучены многие газообразные простые вещества и соединения: двуокись углерода (Дж. Блэк), водород (Г. Кавендиш), азот (Д. Резерфорд), окись азота, окись углерода, двуокись серы (Дж. Пристли), кислород, хлор, фторид кремния (К. Шееле) и др. газы.

  Лит.: Фигуровский Н. А., Очерк общей истории химии, М., 1969, с. 292—323.

Пневматические строительные конструкции

Пневмати'ческие строи'тельные констру'кции, мягкие оболочки, во внутренний замкнутый объём которых воздухонагнетательными установками (вентиляторами, воздуходувками, компрессорами) подаётся атмосферный воздух, чем достигается их устойчивость и противодействие внешним нагрузкам (несущая способность). Впервые П. с. к. были применены в 1946 при сооружении обтекателя радиолокационной антенны (инженер У. Бэрд, США). В последующие годы П. с. к. получили распространение во многих странах.

  Оболочки П. с. к. изготовляют из технических тканей с покрытиями из полимеров (в т. ч. каучуков) или армированных плёнок. Силовой основой плёнок и тканей служат нити из синтетического, реже стеклянного волокна.

  Различают 2 основных типа П. с. к. (рис.): воздухоопорные, в которых слабо сжатый (избыточное давление 0,1—1 кн/м2) воздух подаётся непосредственно под оболочку сооружения, и воздухонесомые, где сильно сжатый (избыточное давление 30—700 кн/м2) воздух наполняет только несущие элементы П. с. к. При установке воздухоопорных П. с. к. оболочка в месте примыкания к основанию плотно закрепляется по периметру сооружения. Для входа в сооружения (и выхода из них) устраивают шлюзы. Воздухонесомые П. с. к. подразделяют на пневмостержневые и пневмопанельные. Применяют также комбинированные оболочки — воздухоопорные с поддерживающими конструкциями, а также усиленные канатами, сетками, оттяжками и диафрагмами.

  Достоинства П. с. к.: малая масса, возможность перекрытия больших пролётов без внутренних опор, полная заводская готовность, быстрота монтажа, транспортабельность, свето- и радиопрозрачность, низкая стоимость. Недостатки: необходимость постоянного поддержания избыточного давления воздуха в оболочке, сравнительная недолговечность, низкие огнестойкость и звукоизолирующая способность.



  Применение П. с. к. рационально для возведения постоянных и временных сооружений различного назначения (производственные и складские помещения, зрелищные, спортивные, торговые, выставочные и др. сооружения), мобильных зданий (станции технического обслуживания, медпункты, клубы, библиотеки), транспортных и гидротехнических сооружений (мосты, плотины, затворы), вспомогательных устройств для производства строительных работ (подъёмники, тепляки, опалубка и т.п.).

  Лит.: Отто Ф., Тростель P., Пневматические строительные конструкции, пер. с нем., М., 1967; Пневматические конструкции воздухоопорного типа, М., 1973; Dent R. N., Principles of pneumatic architecture, L., 1971.

  В. В. Ермолов.

Пневматические сооружения. Пневмопанельное.

Пневматические сооружения. Пневмоарочное.

Пневматические сооружения. Воздухоопорное.

Пневматические сооружения. Воздухоопорное с усиливающими канатами (тросами).

Пневматический громкоговоритель

Пневмати'ческий громкоговори'тель, акустический излучатель, в котором звук создаётся изменением (модуляцией) потока сжатого воздуха. П. г. применялись в 30—40-х гг. 20 в. для передачи команд и сообщений в крупных гаванях, речных портах и на др. объектах с повышенным уровнем шума. П. г. состоит из компрессора и баллона, создающих поток сжатого воздуха, модулятора, изменяющего этот поток в соответствии с подводимыми звуковыми колебаниями, и рупора, излучающего звук. П. г. развивали акустическую мощность до 2 квт и воспроизводили звуковые колебания с частотами до 2,5— 3,5 кгц (при больших собственных шумах и значительных нелинейных искажениях).

  Лит.: Олсон Г. Ф., Масса Ф., Прикладная акустика, пер. с англ., М., 1938; Беранек Л., Акустические измерения, пер. с англ., М., 1952.