Страница 11 из 70
С. А. Щенков.
Оператор
Опера'тор , математическое понятие, в самом общем смысле означающее соответствие между элементами двух множеств Х и Y , относящее каждому элементу х из Х некоторый элемент у из Y . Эквивалентный смысл имеют термины: операция, отображение , преобразование , функция . Элемент у называется образом х , х — прообразом у . В тех случаях, когда Х и Y — числовые множества, пользуются обычно термином «функция». О., отображающий бесконечномерное пространство в множество действительных или комплексных чисел, называется функционалом . Наиболее важным классом О. являются линейные операторы в линейных нормированных пространствах. Во многих вопросах физики и математического анализа важную роль играют дифференциальные и интегральные О. Изучением различных свойств О., действий над ними и применением их к решению различных математических задач занимается операторов теория .
Операторов теория
Опера'торов тео'рия , часть функционального анализа , посвященная изучению свойств операторов и применению их к решению различных задач. Понятие оператора — одно из самых общих математических понятий.
Примеры:
1) Отнеся каждому вектору (x1 , x2 , x3 ) вектор (x’1 , x’’2 , x’3 ) так, что x’i = ai 1 x1 + ai 2 x2 + ai 3 x3 (i = 1, 2, 3; ai 1 , ai 2 , ai 3 — фиксированные числа), получим некоторый оператор.
2) Операция (оператор) дифференцирования D [f (t )] = f’ (t ) относит каждой дифференцируемой функции f (t ) её производную f’ (t ).
3) Операция (оператор) определённого интегрирования I = относит каждой интегрируемой функции действительное число.
4) Отнеся каждой функции f (t ) её произведение j(t ) f (t ) на фиксированную функцию j(t ), снова получаем оператор.
Общая О. т. возникла в результате развития теории интегральных уравнений, решения задач на нахождение собственных функций и собственных значений для дифференциальных операторов (см., например, Штурма — Лиувилля задача ) и др. разделов классического анализа. О. т. установила тесные связи между этими разделами математики и сыграла важную роль в их дальнейшем развитии. Ещё до возникновения общего понятия оператора операторные методы широко применялись в решении различных типов дифференциальных уравнений, обыкновенных и с частными производными (см. Операционное исчисление ). О. т. представляет собой основной математический аппарат квантовой механики (см. Операторы в квантовой теории).
Операторы в линейных пространствах . Чаще всего встречаются операторы, действующие в линейных нормированных пространствах (см. Линейное пространство ), в частности в функциональных пространствах, т. е. отображения у = А (х ) линейного пространства R или его части в некоторое линейное пространство R' (возможно, совпадающее с R ). Этот класс операторов охватывает такие важнейшие понятия, как числовые функции , линейные преобразования евклидова пространства, дифференциальные и интегральные операторы (см. ниже) и т.д. Наиболее изученными и важными для приложений являются линейные операторы. Оператор называется линейным, если A (ax+ by ) = aА (х ) + bА (у ) для любых элементов х , у пространства R и любых чисел a, b. Если пространства R и R' нормированы, а отношение нормы А (х ) к норме х ограничено, то линейный оператор A называется ограниченным, а верхнюю грань отношения его нормой. Ограниченность линейного оператора равносильна его непрерывности, т. е. тому, что А (Хп ) ® А (х ), когда Хп ® х . Оператор дифференцирования (пример 2) представляет собой один из важнейших примеров неограниченного (а следовательно, и не непрерывного) линейного оператора. См. также Линейный оператор .
Приведённые выше примеры 1—4 представляют собой примеры линейных операторов. Дальнейшие примеры линейных операторов:
5) Пусть k (s , t ) — непрерывная функция двух переменных, заданная в квадрате a £ s £ b , а £ t £ b . Формула
определяет линейный интегральный оператор, называется оператором Фредгольма.
6) Каждой абсолютно интегрируемой на всей прямой функции f (t ) поставим в соответствие функцию
называется Фурье преобразованием исходной функции. Это соответствие также представляет собой линейный оператор.
7) Левую часть линейного дифференциального уравнения
можно рассматривать как результат применения некоторого оператора, ставящего в соответствие функции x (t ) функцию j(t ). Такой оператор носит название линейного дифференциального оператора. Простейшим частным случаем линейного дифференциального оператора является оператор дифференцирования.
Примеры нелинейных операторов:
8) Пусть A [f (t )] = f 2 (t ); определённый т. о. оператор является нелинейным.
9) Пусть
(F — некоторая ограниченная непрерывная функция). Соответствие g ® h , определяемое этой формулой, представляет собой нелинейный интегральный оператор.
Действия над операторами . Пусть дан оператор
у = А (х ),
причём никакие два разных элемента х и х' не переходят в один и тот же элемент у . Тогда каждому образу у отвечает его единств. прообраз х . Это соответствие называется обратным оператором и обозначают
х = А –1 (у ).
Построение обратного оператора эквивалентно решению уравнения у = А (х ) относительно х (отыскание неизвестного прообраза по данному образу).
Если A 1 и А 2 — два оператора, отображающих R в R' , то их суммой А = A 1 + A 2 называется оператор, определяемый равенством А (х ) = A 1 (x ) + A 2 (x ). Если оператор A 1 переводит R в R' , а A 2 переводит R' в R” , то результат их последовательного применения представляет собой оператор, отображающий R в R” ; его называют произведением A 2 A 1 операторов A 1 и A 2 . Если, в частности, рассматриваются операторы, переводящие некоторое линейное пространство в себя, то сумма и произведение двух таких операторов всегда определены. Результат последовательного применения п раз одного и того же оператора А есть n -я степень An этого оператора. Например, n -я степень оператора дифференцирования есть оператор n -kpaтного дифференцирования Dn [f (t)] = f (n) (t). Произведение lА оператора А на число l определяется формулой