Добавить в цитаты Настройки чтения

Страница 333 из 354

  В М. г. при построении прогнозов пользуются данными инженерной геологии , инженерной гидрогеологии , а также исходными зависимостями механики сплошной среды и, в частности, — теорий упругости, пластичности, ползучести, статики сыпучей среды.

  Задачи исследования напряжений и деформаций грунтовых массивов под действием внешних сил и собственного веса, разработка вопросов их прочности, устойчивости, давления грунтов на ограждения, а также на неглубоко расположенные подземные сооружения являются важнейшими в М. г.; решение их для различных случаев загружения имеет непосредственное приложение в практике строительства.

  При рассмотрении поставленных проблем в М. г. в основном применяются 2 метода: расчётно-теоретический, основывающийся на математическом решении четко сформулированных задач М. г. с обязательным опытным (лабораторным или полевым) определением значений исходных параметров, и метод моделирования, используемый в тех случаях, когда сложность задачи не позволяет получить «замкнутого» решения или когда результат получается весьма громоздким. Первый метод интенсивно развивается благодаря применению ЭВМ. Второй метод (впервые предложенный в СССР Г. И. Покровским и Н. Н. Давиденковым) получает развитие в М. г. в двух направлениях: физического моделирования для задач, в которых не учитываются массовые силы, и центробежного моделирования, отвечающего требованиям теории подобия (см. Подобия теория ) с учётом массовых сил.

  Использование решений, основанных на уравнениях сплошной линейно-деформируемой среды и применяемых к грунтам лишь при определённых условиях, позволяет рассматривать многие задачи М. г., где напряжённое состояние не является предельным. В ряде случаев по теории линейно-деформируемой среды устанавливается лишь напряжённое состояние, а переход к деформациям осуществляется при помощи экспериментально определяемых зависимостей.

  При рассмотрении задач о деформировании грунтов во времени (по теории фильтрационной консолидации или ползучести) применяется распределение напряжений, полученное на основе решения задачи для сплошной линейно-деформируемой среды.

  Теория предельного равновесия сыпучих сред используется в М. г. для рассмотрения задач, связанных с определением критических нагрузок на основания, предельного равновесия грунтового откоса заданного профиля, очертания максимально устойчивых откосов без пригрузки или с заданной пригрузкой сверху, активного и пассивного давлений грунтов на наклонные подпорные стенки, устойчивости грунтовых сводов и др.

  Некоторые виды грунтов, являясь структурно неустойчивыми (оттаивающие вечномёрзлые, лёссовые просадочные при замачивании, слабые структурные), обладают особенностями деформирования, связанными с резкими изменениями их физического состояния и структуры. В современных М. г. разработаны специальные методы расчёта осадок вечномёрзлых грунтов при их оттаивании, просадок лёссов при замачивании, устанавливаются предельные скорости загружения слабых глинистых и заторфованных грунтов из условия сохранения их структурной прочности и т. д. На основе научных достижений в области М. г. в СССР создан наиболее прогрессивный метод проектирования оснований и фундаментов по предельным деформациям. Важной задачей современной М. г. является дальнейшее совершенствование методов определения физико-механических свойств грунтов в лабораторных и полевых условиях, комплексного исследования совместной работы фундаментов сооружений и грунтов оснований, расчёта свайных фундаментов.

  Первой фундаментальной работой по М. г. является исследование французского учёного Ш. Кулона (1773) по теории сыпучих тел, ряд результатов которого успешно применяется и в настоящее время при расчёте давления грунтов на подпорные стенки. Французским учёным Ж. Буссинеском было получено решение задачи (1885) о распределении напряжений в упругом полупространстве под сосредоточенной силой, послужившее основой для определения напряжений в линейно-деформируемых основаниях. Важным этапом в развитии М. г. явились исследования американского учёного К. Терцаги. Большой вклад в М. г. сделан русскими (В. И. Курдюмов, П. А. Миняев) и особенно советскими учёными. Последними разработана новейшая теория предельного равновесия грунтов (В. В. Соколовский, В. Г. Березанцев, С. С. Голушкевич, М. В. Малышев и др.), сформулированы и решены задачи теории консолидации двух- и трёхфазных грунтов (Н. М. Герсеванов и Д. Е. Польшин, В. А. Флорин, Н. А. Цытович, Н. Н. Маслов, Ю. К. Зарецкий и др.)., на базе теории балок на упругом основании исследованы вопросы совместной работы сооружений и их оснований (А. Н. Крылов, М. И. Горбунов-Посадов, В. А. Флорин, Б. Н. Жемочкин, А. П. Синицын, И. А. Симвулиди и др.). Важная роль принадлежит советским учёным в разработке ряда вопросов механики отдельных региональных видов грунтов — структурно-неустойчивых просадочных (Ю. М. Абелев, Н. Я. Денисов, Р. А. Токарь), многолетнемёрзлых (Н. А. Цытович, С. С. Вялов, М. Н. Гольдштейн и др.). Среди исследований по вопросам устойчивости откосов наиболее известны работы В. В. Соколовского, Н. Н. Маслова, М. Н. Гольдштейна, подпорных стенок — И. П. Прокофьева, Г. К. Клейна. Из зарубежных учёных в области М. г. наиболее известны своими работами: Ж. Керизель (Франция), И. Бринч-Хансен (Дания), Р. Гибсон, А. Бишоп (Великобритания), М. Био, У. Лэмб (США).



  Научно-исследовательские работы по М. г. ведутся в ряде научных учреждений и вузов СССР, преимущественно в Научно-исследовательском институте оснований и подземных сооружений им. Н. М. Герсеванова, Московском инженерно-строительном институте им. В. В. Куйбышева и др. строительных вузах.

  В 1936 по инициативе К. Терцаги было создано Международное общество по механике грунтов и фундаментостроению (ISSMFE), членом которого (с 1957) является СССР. 8-й конгресс этого общества состоялся в Москве в 1973. Орган общества — журнал «Géotechnique» (L., c 1948). В СССР с 1959 издаётся журнал «Основания, фундаменты и механика грунтов». Периодические издания выпускаются также в США, Франции, Италии и др. странах.

  Лит.: Прокофьев И. П., Давление сыпучего тела и расчёт подпорных стенок, 5 изд., М., 1947; Герсеванов Н. М., Польшин Д. Е., Теоретические основы механики грунтов и их практические применения, М., 1948; Флорин В. А., Основы механики грунтов, т. 1—2, Л. — М., 1959—1961; Соколовский В. В., Статика сыпучей среды, 3 изд., М., 1960; Терцаги К., Теория механики грунтов, пер. с нем., М., 1961; Цытович Н. А., Механика грунтов, 4 изд., М., 1963; его же, Механика грунтов. Краткий курс, 2 изд., М., 1973; Клейн Г. К., Расчёт подпорных стен, М., 1964; Гольдштейн М. Н., Механические свойства грунтов, 2 изд., [т. 1—2], М., 1971—73.

  Н. А. Цытович, М. В. Малышев.

Механика развития

Меха'ника разви'тия, раздел биологии, изучающий причинные механизмы индивидуального развития организмов. Основанная в 80-х гг. 19 в. немецким учёным В. Ру М. р. бурно развивалась в 1-й трети 20 в. Начиная с 40-х гг. в результате сближения М. р., цитологии, генетики, эмбриологии, экспериментальной морфологии, биохимии и молекулярной биологии возникла синтетическая область исследования — биология развития .