Страница 12 из 359
Лит.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 23—25; Ленин В. И., По поводу так называемого вопроса о рынках, Полн. собр. соч., 5 изд., т. 1; его же, К характеристике экономического романтизма, там же, т. 2; Канторович Л. В., Экономический расчёт наилучшего использования ресурсов, М., 1959; Новожилов В. В., Проблемы измерения затрат и результатов при оптимальном планировании, М., 1967; Неиман Дж. фон, Моргенштерн О., Теория игр и экономическое поведение, пер. с англ., М., 1970; Воспроизводство и экономический оптимум, М., 1972; Кунявский М. С., Отношения непосредственного производства при социализме, Минск, 1972; Лурье А. Л., Экономический анализ моделей планирования социалистического хозяйства, М., 1973; Агrow К., Hahn F., General competitive analisis, S. F., 1971.
Ю. В. Овсиенко.
Модели (в языкознании)
Моде'ли в языкознании, используются в структурной лингвистике при описании языка и его отдельных аспектов (фонологических, грамматических, лексических и других систем) для уточнения лингвистических понятий и связей между ними, что помогает выявить структуры, лежащие в основе бесконечного разнообразия языковых явлений (М. иногда называют сами эти структуры). В зависимости от области применения М. делятся на фонологические, морфологические, синтаксические, семантические. При построении М. используются средства и методы математической лингвистики. В любой М. фиксируются: объекты, соответствующие данным непосредственного наблюдения, — множества звуков, слов, предложений; объекты, конструируемые исследователем для описания («конструкты»), — заранее заданные строго ограниченные наборы категорий, признаков, элементарных смысловых структур и т. п.
Если исходный материал («вход») при исследовании — звуки, слова, предложения, а результат («выход») — категории и смысловые структуры, то М. называют аналитической. Такова М. категории рода , дающая однозначное решение спорных вопросов. Принадлежность к грамматическому роду может определяться формой слова (например, в русском языке слова, оканчивающиеся на «-а», обычно женского рода, но этот признак не однозначен, ср. «папа»), значением (слова, обозначающие существа женского пола, относятся к женскому роду, но и этот признак не однозначен, ср. в немецком языке das Weib — «женщина» — среднего рода). В М. рода считается, что для каждого слова задана система его форм (например, стол, стола, столу...) и известно, какие словоформы согласуются с данной словоформой (например, этот стол, этого стола...). Два слова х (стол) и у (какаду) относятся к одному роду, если для любой формы х 1 слова х и любой словоформы z , согласуемой с x 1 , найдётся форма y 1 слова у , согласуемая с z (этот какаду, этого какаду), причём обратное верно для любой формы y 1 слова у . Эта М. даёт возможность не только однозначно решать спорные вопросы, но и сопоставить категорию рода с категорией части речи (род оказывается «вложенным» в часть речи); установить, какие категории других частей речи устроены изоморфно (аналогично) с родом существительного (например, категория глагольного управления); сравнить категорию рода в русском и других индоевропейских языках с категорией грамматического класса, например в языках банту . Т. о., аналитические М. находят применение в типологии языков.
Если исходный материал — категории и элементарные смысловые структуры, а «выход» — некоторые формальные построения, то М. называется синтетической, или порождающей (такие М. называют также порождающими грамматиками, см. Грамматика формальная , Математическая лингвистика ). Порождающая М. воплощает в себе некоторую гипотезу о внутреннем (недоступном прямому наблюдению) строении языка, которая затем проверяется путём сравнения множества выводимых в М. объектов с реальными языковыми фактами. Это позволяет классифицировать и оценивать М. по степени соответствия фактам языка и по степени раскрытия интуитивно ощущаемых закономерностей языка («объяснительной силе»). Т. к. каждая М. описывает не весь язык, а некоторую его область или даже отдельную категорию, то точное описание языка предполагает одновременное использование разных М., относящихся как к одной области языка (например, несколько дополняющих друг друга М. категорий части речи, падежа, рода), так и к разным областям.
Лит.: Апресян Ю. Д., Идеи и методы современной структурной лингвистики, М., 1966; Ревзин И. И., Метод моделирования и типология славянских языков, М., 1967; Маркус С., Теоретико-множественные модели языков, пер. с англ., М., 1970; Хомский Н., Аспекты теории синтаксиса, пер. с англ., М., 1972.
И. И. Ревзин.
Моделизм
Модели'зм спортивный, конструирование и постройка действующих и стендовых моделей летательных аппаратов, автомобилей, судов, локомотивов и других средств транспорта для спортивных соревнований и демонстраций. См. Авиамоделизм , Автомодельный спорт , Судомодельный спорт .
Моделирование
Модели'рование, исследование объектов познания на их моделях ; построение и изучение моделей реально существующих предметов и явлений (живых и неживых систем, инженерных конструкций, разнообразных процессов — физических, химических, биологических, социальных) и конструируемых объектов (для определения, уточнения их характеристик, рационализации способов их построения и т. п.).
М. как познавательный приём неотделимо от развития знания. По существу, М. как форма отражения действительности зарождается в античную эпоху одновременно с возникновением научного познания. Однако в отчётливой форме (хотя без употребления самого термина) М. начинает широко использоваться в эпоху Возрождения; Брунеллески , Микеланджело и другие итальянские архитекторы и скульпторы пользовались моделями проектируемых ими сооружений; в теоретических же работах Г. Галилея и Леонардо да Винчи не только используются модели, но и выясняются пределы применимости метода М. И. Ньютон пользуется этим методом уже вполне осознанно, а в 19—20 вв. трудно назвать область науки или её приложений, где М. не имело бы существенного значения; исключительно большую методологическую роль сыграли в этом отношении работы Кельвина, Дж. Максвелла , Ф. А. Кекуле , А. М. Бутлерова и других физиков и химиков — именно эти науки стали, можно сказать, классическими «полигонами» методов М. Появление же первых электронных вычислительных машин (Дж. Нейман , 1947) и формулирование основных принципов кибернетики (Н. Винер , 1948) привели к поистине универсальной значимости новых методов — как в абстрактных областях знания, так и в их приложениях. М. ныне приобрело общенаучный характер и применяется в исследованиях живой и неживой природы, в науках о человеке и обществе (см. Модели в биологии, Модели в экономике, Модели в языкознании, Ядерные модели ).