Добавить в цитаты Настройки чтения

Страница 12 из 25



  Возникновение М. к. требует устойчивого положения суши в высоких широтах и на достаточной высоте над уровнем моря, а также определённого типа циркуляции атмосферы и океанических вод. Формирование М. к. предшествует развитию поверхностного оледенения и охватывает большие по сравнению с последним площади. Особенно яркого выражения М. к. достигала при глобальных похолоданиях климата. Периоды агградации и деградации М. к. неоднократно повторялись на протяжении геологической истории Земли.

  Термин «М. к.» предложен П. Ф. Швецовым в 1955. Организация систематических исследований явлений М. к. начата в СССР в 1927 и связана с именем М. И. Сумгина. Значительный вклад в дальнейшее развитие учения о М. к. внесли советские учёные (Н. И. Толстихин, В. А. Кудрявцев, П. А. Шумский, И. Я. Баранов, Б. Н. Достовалов, А. И. Попов), а также американские (С. Мюллер, Т. Л. Певе, А. Л. Уошберн, А. Лахенбрух), французские и английские (А. Кайо, Дж. Тейлор), шведский (Г. Бесков), канадский (Дж. Р. Маккей) и другие учёные.

  Лит.: Сумгин М. И., Вечная мерзлота почвы в пределах СССР, 2 изд., М. — Л., 1937; Толстихин Н. И., Подземные воды мерзлой зоны литосферы, М. — Л., 1941; Шумский П. А., Кренке А. Н., Современное оледенение Земли и его изменения, «Геофизический бюллетень», 1964, № 14; Баранов И. Я., Вечная мерзлота и ее возникновение в ходе эволюции Земли как планеты, «Астрономический журнал», 1966, т. 43, в. 4; Достовалов Б. Н., Кудрявцев В. А., Общее мерзлотоведение, М., 1967; Попов А. И., Мерзлотные явления в земной коре (Криолитология), М., 1967; II Международная конференция по мерзлотоведению. Доклады и сообщения, в. 1—7, Якутск, 1973; Muller S. W., Permafrost or permanently frozen ground and related engineering problems, A

  А. А. Шарбатян.

Карта криогенных образований (по И. Я. Баранову и П. А. Шумскому).

Многолетняя мерзлота

Многоле'тняя мерзлота', то же, что вечная мерзлота . См. также Многолетняя криолитозона .

Многомерное пространство

Многоме'рное простра'нство, пространство, имеющее число измерений (размерность ) более трёх. Обычное евклидово пространство, изучаемое в элементарной геометрии, трёхмерно; плоскости — двумерны, прямые — одномерны. Возникновение понятия М. п. связано с процессом обобщения самого предмета геометрии. В основе этого процесса лежит открытие отношений и форм, сходных с пространственными, для многочисленных классов математических объектов (зачастую не имеющих геометрического характера). В ходе этого процесса постепенно выкристаллизовалась идея абстрактного математического пространства как системы элементов любой природы, между которыми установлены отношения, сходные с теми или иными важными отношениями между точками обычного пространства. Наиболее общее выражение эта идея нашла в таких понятиях, как топологическое пространство и, в частности, метрическое пространство .

  Простейшими М. п. являются n -мерные евклидовы пространства , где n может быть любым натуральным числом. Подобно тому, как положение точки обычного евклидова пространства определяется заданием трёх её прямоугольных координат, «точка» n -мерного евклидова пространства задаётся n «координатами» x 1 , x 2 , ..., xn (которые могут принимать любые действительные значения); расстояние r между двумя точками M (x 1 , x 2 , ..., xn ) и М' (у 1 , y 2 , ..., y n ) определяется формулой

аналогичной формуле расстояния между двумя точками обычного евклидова пространства. С сохранением такой же аналогии обобщаются на случай n -мерного пространства и другие геометрические понятия. Так, в М. п. рассматриваются не только двумерные плоскости, но и k -мерные плоскости (k < n ), которые, как и в обычном евклидовом пространстве, определяются линейными уравнениями (или системами таких уравнений).



  Понятие n -мерного евклидова пространства имеет важные применения в теории функций многих переменных, позволяя трактовать функцию n переменных как функцию точки этого пространства и тем самым применять геометрические представления и методы к изучению функций любого числа переменных (а не только одного, двух или трёх). Это и было главным стимулом к оформлению понятия n -мерного евклидова пространства.

  Важную роль играют и другие М. п. Так, при изложении физического принципа относительности пользуются четырёхмерным пространством, элементами которого являются т. н. «мировые точки». При этом в понятии «мировой точки» (в отличие от точки обычного пространства) объединяется определённое положение в пространстве с определённым положением во времени (поэтому «мировые точки» и задаются четырьмя координатами вместо трёх). Квадратом «расстояния» между «мировыми точками» М’ (х’, y’, z’, t’ ) и М’’ (х’’, y’’, z’’, t’’ ) (где первые три «координаты» — пространственные, а четвёртая — временная) естественно считать здесь выражение

(M’ M’’ )2 = (x’ - x’’ )2 + (y’ y’’ )2 + (z’z’’ )2 — c2 (t’ t’’ )2 ,

где с — скорость света. Отрицательность последнего члена делает это пространство «псевдоевклидовым».

  Вообще n -мерным пространством называется топологическое пространство, которое в каждой своей точке имеет размерность n . В наиболее важных случаях это означает, что каждая точка обладает окрестностью, гомеоморфной открытому шару n -мерного евклидова пространства.

  Подробнее о развитии понятия М. п., геометрии М. п., а также лит. см. в ст. Геометрия .

Многомужество

Многому'жество, см. Полиандрия .

Многоножки

Многоно'жки (Myriapoda), общее название 4 классов наземных членистоногих животных: губоногих , двупарноногих , симфил и пауропод ; прежде считались одним классом. Тело М. состоит из головы и более или менее длинного сегментированного туловища. Усиков 1 пара; ноги имеются на всех (или почти на всех) туловищных сегментах. Около 11 тыс. видов; в СССР около 1000 видов. Обитают в почве, лесной подстилке, гнилой древесине. Питаются гниющими растительными остатками (двупарноногие, симфилы), мицелием грибов (пауроподы); некоторые — хищники (губоногие).