Страница 28 из 519
Магнетокалорический эффект
Магнетокалори'ческий эффе'кт, изменение температуры магнетика при адиабатическом изменении напряжённости магнитного поля Н, в котором находится магнетик. С изменением поляна dH совершается работа намагничивания dА = JdH (J — намагниченность). По первому началу термодинамики dА = dQ — dU, где dQ — сообщенное магнетику количество теплоты (оно равно нулю в условиях адиабатичности), dU — изменение внутренней энергии магнетика. Таким образом, при dQ = 0 работа совершается лишь за счёт изменения внутренней энергии (dA = —dU ), что приводит к изменению температуры магнетика, если его внутренняя энергия зависит от температуры Т. В пара- и ферромагнетиках с ростом Н намагниченность J увеличивается, то есть растет число атомных магнитных моментов (спиновых или орбитальных), параллельных Н . В результате энергия пара- и ферромагнетиков по отношению к полю и их внутренняя энергия обменного взаимодействия уменьшаются. С другой стороны, внутренняя энергия пара- и ферромагнетиков увеличивается с увеличением Т. Поэтому на основании Ле Шателье — Брауна принципа при намагничивании должно происходить нагревание пара- и ферромагнетиков. Для ферромагнетиков этот эффект максимален вблизи точки Кюри, для парамагнетиков М. э. растет с понижением температуры. При адиабатическом уменьшении поля происходит частичное или полное (при выключении поля) разрушение упорядоченной ориентации моментов за счёт внутренней энергии, к охлаждению магнетика (См. Магнитное охлаждение ).
Лит.: Вонсовский С. В., Магнетизм, М., 1971.
С. В. Вонсовский.
Магнетон
Магнето'н, единица измерения магнитного момента , принятая в атомной и ядерной физике.
Магнитный момент атомных систем в основном обусловлен движением электронов и их спином и измеряется в магнетонах Бора:
эрг/гс (1)
Здесь — Планка постоянная , е и m — абсолютные величина заряда и масса электрона, с — скорость света.
В ядерной физике магнитные моменты измеряются в ядерных магнетонах, отличающихся от mБ заменой массы электрона m на массу протона М :
эрг/гс (2)
Физический смысл величины mБ легко понять из полуклассического рассмотрения движения электрона по круговой орбите радиуса r со скоростью v. Такая система аналогична витку с током, сила I которого равна заряду, деленному на период вращения: I = ev / 2pr . Согласно классической электродинамике, магнитный момент витка с током, охватывающего площадь S, равен в системе Гаусса (см. СГС система единиц ) m = IS/c = evr / 2c , или m = eMl / 2mc , где Ml = mvr — орбитальный момент количества движения электрона. Если учесть, что по квантовым законам орбитальный момент Ml электрона может принимать лишь дискретные значения, кратные постоянной Планка, Ml = l , где l = 0, 1, 2,..., то получится следующее выражение:
(3)
Таким образом, магнитный момент электрона, находящегося в состоянии с орбитальным моментом Ml , кратен М. Бора. Следовательно, в данном случае mБ играет роль элементарного магнитного момента — «кванта» магнитного момента электрона.
Помимо орбитального момента количества движения Ml , обусловленного вращением, электрон обладает собственным механическим моментом — спином, равным s = 1 /2 (в единицах ). Спиновый магнитный момент ms = 2mБ s , то есть в 2 раза больше величины, которую следовало ожидать на основании формулы (3), но так как s = 1 /2 , то ms электрона также равен М. Бора: ms = mБ . Этот факт непосредственно вытекает из релятивистской квантовой теории электрона, в основе которой лежит Дирака уравнение .
Ядерный М. имеет аналогичный смысл: это магнитный момент, создаваемый движением протона (внутри ядра) с орбитальным моментом l = 1. Однако собственные магнитные моменты ядерных частиц — протона и нейтрона, обладающих, как и электрон, спином 1 /2 , значительно отличаются от тех значений, которые они должны были бы иметь по теории Дирака. Аномальные магнитные моменты этих частиц обусловлены их сильным взаимодействием .
Д. В. Гольцов.
Магнетосопротивление
Магнетосопротивле'ние, магниторезистивный эффект, изменение электрического сопротивления твёрдого проводника под действием внешнего магнитного поля. Различают поперечное М., при котором электрический ток течёт перпендикулярно магнитному полю, и продольное М. (ток параллелен магнитному полю). Причина М. — искривление траекторий носителей тока в магнитном поле. У полупроводников относительное изменение сопротивления Dr/r в 100 — 10 000 раз больше, чем у металлов , и может достигать сотен %. М. относится к группе гальваномагнитных явлений . М. используется для исследования электронного энергетического спектра и механизма рассеяния носителей тока кристаллической решёткой, а также для измерения магнитных полей.
Лит.: Лифшиц И. М., Азбель М. Я., Каганов М. И., Электронная теория металлов, М., 1971; Блатт Ф., Физика электронной проводимости в твердых телах, пер. с англ., М., 1971; Ансельм А. И., Введение в теорию полупроводников, М. — Л., 1962.
Э. М. Эпштейн.