Добавить в цитаты Настройки чтения

Страница 7 из 9



  Потребление O2 клетками и тканями и образование ими CO2, что составляет сущность тканевого, или клеточного, Д., — одна из основных форм диссимиляции, осуществляющейся у животных и растений в принципе одинаково. Высокое потребление O2 характерно для тканей почек, коры больших полушарий головного мозга, сердца. В результате окислительно-восстановительных реакций тканевого Д. освобождается энергия, расходуемая на все жизненные проявления. Процесс этот осуществляется в митохондриях и складывается из дегидрирования субстратов Д. — углеводов и продуктов их расщепления, жиров и жирных кислот, аминокислот и продуктов их дезаминирования. Субстраты Д. поглощают O2 и служат источником CO2 (отношение —

называется дыхательным коэффициентом). Энергия, освобождающаяся при окислении органических веществ, не используется тканями непосредственно, т.к. около 70% её расходуется на образование АТФ — одной из аденозинфосфорных кислот, последующее ферментативное расщепление которой обеспечивает энергетические потребности тканей, органов и организма в целом (см. Окисление биологическое, Окислительное фосфорилирование). Т. о., с биохимической точки зрения Д. — это превращение энергии углеводов и др. веществ в энергию макроэргических фосфатных связей.

  Постоянство pO2 и pCO2 в альвеолярном воздухе, а стало быть, и в артериальной крови может поддерживаться лишь при условии, если альвеолярная вентиляция соответствует скорости потребления организмом O2 и образования CO2, т. е. уровню обмена веществ. Это условие обеспечивается благодаря совершенным механизмам регуляции Д. Управление частотой и глубиной Д. осуществляется рефлекторным путём. Так, повышение pCO2 и снижение pO2 в альвеолярном воздухе и в артериальной крови возбуждают хеморецепторы синокаротидной и кардиоаортальной зон, что приводит к возбуждению дыхательного центра и увеличению МОД. Согласно классическим представлениям, повышение pCO2 в артериальной крови, омывающей дыхательный центр, также возбуждает его и вызывает увеличение МОД. Т. о., регуляция Д. по отклонению pO2 и pCO2 в артериальной крови, осуществляемая по типу обратной связи, обеспечивает оптимальный МОД. Однако в ряде случаев, например при мышечной работе, МОД увеличивается до наступления в обмене веществ сдвигов, которые приводят к изменениям в газовом составе крови. Это усиление вентиляции обусловлено сигналами, поступающими в дыхательный центр от рецепторов двигательного аппарата, двигательной зоны коры больших полушарий мозга, а также условными рефлексами на различные сигналы, связанные с привычной работой и её обстановкой. Т. о., управление Д. осуществляется сложной самообучающейся системой не только по принципу регулирования по отклонению, но и по сигналам, предупреждающим о возможных отклонениях. Смена вдоха и выдоха обеспечивается системой взаимодополняющих механизмов. Во время вдоха в дыхательный центр по волокнам блуждающих нервов поступают импульсы от рецепторов растяжения, находящихся в лёгких. При достижении лёгкими определённого объёма эта импульсация тормозит клетки дыхательного центра, возбуждение которых вызывает вдох. При выключении нервных путей, обеспечивающих поступление импульсов в дыхательный центр, ритмичность Д. сохраняется благодаря автоматизму центра, однако характер ритма резко отличается от нормального. При нарушениях Д. и механизмов его регуляции возникают изменения газового состава крови (см. Гипоксия).

  Методы исследования Д. разнообразны. В физиологии труда и спорта, клинической медицине широко применяют регистрацию глубины и частоты дыхательных движений, измерения газового состава выдыхаемого воздуха, артериальной крови, плеврального и альвеолярного давления. См. также Газообмен.

  Лит.: Сеченов И. М., Избр. труды, М., 1935; Холден Дж. и Пристли Дж., Дыхание, пер. с англ., М.—Л., 1937; Маршак М. Е., Регуляция дыхания у человека, М., 1961; Физиология человека, М., 1966; Comroe J. Н., Physiology of respiration, Chi., 1966; Dejours P., Respiration, Oxf., 1966.



  Л. Л. Шик.

  Д. растений. Д. присуще всем органам, тканям и клеткам растения. Об интенсивности Д. можно судить, измеряя количество выделяемого тканью CO2 либо поглощаемого ею O2. Более интенсивно дышат молодые, быстро растущие органы и ткани растений. Наиболее активно Д. репродуктивных органов, затем листьев; слабее Д. стеблей и корней. Теневыносливые растения дышат слабее светолюбивых. Для высокогорных растений, адаптированных к пониженному парциальному давлению O2, характерна повышенная интенсивность Д. Очень активно Д. плесневых грибов, бактерий. Д. усиливается с повышением температуры (на каждые 10°С — примерно в 2—3 раза), прекращаясь при 45—50°С. В тканях зимующих органов растений (почки лиственных деревьев, иглы хвойных) Д. продолжается (с резко сниженной интенсивностью) и при значительных морозах. Д. стимулируют механические и химические раздражения (поранения, некоторые яды, наркотики и т.п.). Закономерно изменяется Д. в ходе развития растения и его органов. Сухие (покоящиеся) семена дышат очень слабо; при набухании и последующем прорастании семян Д. усиливается в сотни и тысячи раз. С окончанием периода активного роста растений Д. их тканей ослабевает, что связано с процессом старения протоплазмы. При созревании семян, плодов интенсивность Д. уменьшается.

  Согласно теории советского биохимика А. Н. Баха, процесс Д., т. е. окисление углеводов, жиров, белков, осуществляется при помощи окислительной системы клетки в два этапа: 1) активирование O2 воздуха путём его присоединения к содержащимся в живой клетке ненасыщенным, способным самопроизвольно окисляться соединениям (оксигеназам) с образованием перекисей; 2) активирование последних с освобождением атомарного кислорода, способного окислять трудно окисляемые органические вещества. По теории дегидрирования русского ботаника В. И. Палладина, важнейшее звено Д. — активация водорода субстрата, осуществляемая дегидрогеназами. Обязательный участник сложной цепи процессов Д. — вода, водород которой вместе с водородом субстрата используется для восстановления самоокисляющихся соединений — так называемых дыхательных пигментов. CO2, выделяющийся при Д., образуется без участия кислорода воздуха, т. е. анаэробно. Кислород воздуха идёт на окисление дыхательных хромогенов, превращающихся при этом в дыхательные пигменты. Дальнейшее развитие теория Д. получила в исследованиях советского ботаника С. П. Костычева, согласно которым первые этапы аэробного Д. аналогичны процессам, свойственным анаэробам. Превращения образующегося при этом промежуточного продукта могут идти с участием кислорода, что свойственно аэробам. У анаэробов же эти превращения идут без участия молекулярного кислорода. По современным представлениям, процесс окисления, который составляет химическую основу Д., заключается в потере веществом электрона. Способность присоединять или отдавать электроны зависит от величины окислительного потенциала соединения. Кислород обладает самым высоким окислительным потенциалом и, следовательно, максимальной способностью присоединять электроны. Однако потенциал кислорода сильно отличается от потенциала дыхательного субстрата. Поэтому роль промежуточных переносчиков электронов от дыхательного субстрата к кислороду выполняют специфические соединения. Попеременно окисляясь и восстанавливаясь, они образуют систему переноса электронов. Присоединив к себе электрон от менее окисленного компонента, такой переносчик восстанавливается и, отдавая его следующему компоненту с более высоким потенциалом, окисляется. Так электрон передаётся от одного звена дыхательной цепи к другому и, в конце концов, кислороду. Таков заключительный этап Д.