Страница 6 из 257
Гравиметрическая разведка
Гравиметри'ческая разве'дка, метод разведочной геофизики, основанный на изучении гравитационного поля Земли. Главное условие для применимости Г. р. — наличие разности плотностей пород, слагающих геологические структуры, способной создать аномальность в наблюдаемом гравитационном поле Земли.
Г. р. выделяет структуры, скрытые осадочными породами и поэтому недоступные изучению обычными геологическими методами. В результате проведения гравиметрической съёмки по качественным оценкам гравитационного поля могут быть выделены как районы, перспективные для поисков полезных ископаемых (общая Г. р.), так и отдельные геологические структуры, в которых возможны нефтяные, газовые и различные рудные месторождения. При детальной Г. р. тщательно изучаются локальные аномалии силы тяжести с тем, чтобы определить условия и элементы залегания аномалеобразующих объектов (глубину, форму и размеры). В общем случае решение этой задачи неоднозначно: можно подобрать бесконечное число различных распределений аномальных масс, создающих одну и ту же гравитационную аномалию. Однозначное решение можно найти, делая определённые предположения об аномальных массах и используя геологические сведения и выводы др. геофизических методов. Г. р., как правило, ведётся в комплексе с магниторазведкой, электроразведкой и сейсморазведкой. Наряду с наблюдаемыми гравитационными аномалиями в Г. р. часто используются получаемые путём пересчёта различные производные от них или те же гравитационные аномалии, но соответствующие точкам выше и ниже земной поверхности. Операция пересчёта называется трансформацией гравитационного поля. По качественному характеру трансформированного гравитационного поля лучше выделяются отдельные геологические структуры. В благоприятных условиях трансформация позволяет определять глубину их залегания и форму. Для решения задач Г. р. проводится гравиметрическая съёмка, которая по условиям её производства подразделяется на наземную, морскую (надводную, подводную, донную), подземную и воздушную. Данные гравиметрических съёмок используются при изучении глубинного строения Земли.
Лит.: Андреев Б. А., Клушин И. Г., Геологическое истолкование гравитационных аномалий, Л., 1965; Федынский В. В. Разведочная геофизика, М., 1966; Веселов К. Е., Сагитов М. У., Гравиметрическая разведка, М., 1968.
П. И. Лукавченко, М. У. Сагитов.
Гравиметрическая съёмка
Гравиметри'ческая съёмка, совокупность измерений величин, характеризующих гравитационное поле данного района. Г. с. включает также определение положений гравиметрических пунктов . Г. с. производится с помощью гравиметров , маятниковых приборов и гравитационных вариометров . По назначению Г. с. подразделяется на общую и детальную. Общая Г. с. используется для изучения фигуры Земли и общего геологического строения больших районов, детальная — для определения отдельных геологических структур, рудных тел, уклонений отвеса. По характеру расположения пунктов Г. с. делится на площадную и профильную (пункты расположены вдоль линии). На основании данных Г. с. строятся гравиметрические карты, представляющие аномальную часть гравитационного поля Земли .
Гравиметрический анализ
Гравиметри'ческий ана'лиз, весовой анализ, один из важных методов количественного химического анализа, основанный на точном измерении массы вещества. Определяемое вещество обычно выделяют из анализируемой пробы в виде малорастворимого соединения известного постоянного химического состава, т. к. выделение вещества в химически чистом виде связано с большими трудностями, а иногда и невозможно. Г. а. начинается с взятия точной навески анализируемой пробы и перевода её в раствор. Затем, прибавляя соответствующий реактив, получают малорастворимый осадок соединения, содержащего определяемое вещество. Осадок отделяют от раствора фильтрованием, промывают и сушат или прокаливают до постоянного значения массы. Зная навеску анализируемой пробы а , массу осадка b и его состав, вычисляют содержание определяемого вещества Х (обычно. в % по массе): X = a×F×100/b, где F — фактор пересчёта, представляющий собой отношение атомной массы определяемого вещества (или величины, кратной атомной массе) к молекулярной массе соединения в осадке. Например, при определении содержания железа (атомной масса 55,85), выделенного в виде его окиси Fe2 O3 (молярная масса 159,70),
Наиболее ответственная операция Г. а. — получение легко фильтрующегося (по возможности крупнокристаллического) малорастворимого осадка (потеря вещества вследствие его растворимости не должна превышать 0,1 мг ), свободного от примесей посторонних веществ, не удаляющихся при сушке или прокаливании. Г. а. отличается большой точностью: относительная ошибка опыта не превышает 0,1%, а при особо тщательной работе может быть доведена до 0,02—0,03% . Недостатки Г. а. — длительность выполнения и необходимость применения сравнительно больших количеств анализируемой пробы (~0,5 г). Последний недостаток устраняется при использовании микро- и ультрамикрометодов Г. а. (подробнее см. Микрохимический анализ ).
Г. а. применяют для определения химического состава горных пород, минералов, сплавов, для контроля качества сырья и готовой продукции в ряде отраслей промышленности. К разновидностям Г. а. относятся пробирный анализ и электрогравиметрический анализ. См. также Аналитическая химия , Количественный анализ .
Лит.: Крешков А. П., Основы аналитической химии, 3 изд., т. 2, М., 1971.
Гравиметрический пункт
Гравиметри'ческий пункт, точка на земной поверхности, где измерено ускорение силы тяжести и определены геодезические координаты, в том числе высота. При производстве гравиметрической съёмки , помимо рядовых, создаётся сеть опорных Г. п. различных классов. На опорных Г. п. проводятся многократные измерения гравиметрическими приборами повышенной точности. Исходным опорным Г. п. для всей мировой гравиметрической съёмки является пункт в Потсдаме (ГДР). См. Гравиметрия .
Гравиметрия
Гравиме'трия (от лат. gravis — тяжёлый и ...метрия ), раздел науки об измерении величин, характеризующих гравитационное поле Земли и об использовании их для определения фигуры Земли, изучения её общего внутреннего строения, геологического строения её верхних частей, решения некоторых задач навигации и др. В перспективе перед Г. стоит задача изучения Луны и планет по их гравитационному полю. В Г. гравитационное поле Земли задаётся обычно полем силы тяжести (или численно равного ей ускорения силы тяжести), которая является результирующей двух основных сил: силы притяжения (тяготения ) Земли и центробежной силы, вызванной её суточным вращением. Центробежная сила, направленная от оси вращения, уменьшает силу тяжести, причём в наибольшей степени на экваторе. Уменьшение силы тяжести от полюсов к экватору обусловлено также и сжатием Земли. В результате действия обеих причин сила тяжести на экваторе примерно на 0,5% меньше, чем на полюсах. Изменение силы тяжести вследствие притяжения Луны и Солнца не превосходит нескольких десятимиллионных её долей. Ещё меньше изменения из-за перемещений масс в недрах Земли и масс воздуха. Величины силы тяжести на земной поверхности зависят от фигуры и распределения плотности внутри Земли. Поэтому изучение гравитационного поля Земли доставляет ценный материал для суждений о её фигуре и внутреннем строении, в частности для разведки полезных ископаемых (см. Гравиметрическая разведка ).