Добавить в цитаты Настройки чтения

Страница 15 из 85

Выше я уже утверждал, что предмет, помещенный в лампу, в которой есть воздух, сильно нагревается, если его соединить с источником высокого напряжения и высокой частоты. Нагрев в таком случае, по всей вероятности, происходит вследствие бомбардировки предмета молекулами газа, содержащегося в лампе. Если из лампы откачать воздух, нагрев происходит гораздо быстрее, и совсем нетрудно довести до состояния свечения провод или нить накаливания, просто соединив их с одним из выводов катушки нужных размеров. Так, если хорошо известный аппарат профессора Крукса, состоящий из согнутого платинового провода и крыльчатки, закрепленной свободно на нем (рисунок 18), соединить с одним из выводов катушки, — причем соединены могут быть любой конец провода или оба сразу, — провод нагревается до свечения моментально, а слюдяная крыльчатка вращается так, как будто применялся ток из аккумулятора. Тонкая угольная нить или, лучше, пробка, изготовленная из преломляющего свет материала (рисунок 19), даже если они сравнительно плохие проводники, помещенные в колбу с откачанным воздухом, могут сильно светиться; и вот так мы получаем простую лампочку мощностью в нужное количество свечей.

Хорошо ли работают такие лампы, зависит прежде всего от выбора материала предмета, помещаемого в колбу. Поскольку при описанных условиях могут использоваться предметы, изготовленные из материала с высокими преломляющими способностями, — а они плохие проводники и способны длительное время выдерживать высокие температуры, — такие осветительные приборы можно считать вполне удачными.

Некоторые могут подумать, что если из лампочки, в которую помещен преломляющий свет предмет, полностью откачать воздух, — насколько это можно проделать при помощи современной техники, — то нагрев будет не таким сильным, а в абсолютном вакууме он вообще не будет происходить. Мой опыт этого не подтверждает; напротив, чем лучше вакуум, тем проще довести предмет до свечения. Этот результат интересен по нескольким причинам.

В начале этой работы я задался вопросом: можно ли довести до свечения одним конденсаторным действием два предмета из материала с высокими преломляющими способностями, помещенными в колбу, из которой воздух откачан до такой степени, что разряд большой катушки, работающей в обычном режиме, не может пройти? Очевидно, для того, чтобы достичь такого результата, надо применить высокое напряжение и частоту, как это следует из простых подсчетов.

Но такая лампа обладала бы огромным преимуществом перед обычной лампой накаливания с точки зрения КПД. Хорошо известно, что КПД лампы — это в определенной степени функция степени накаливания и что если бы мы могли накаливать нить в несколько раз сильнее, то КПД был бы выше. В обычной лампе это непрактично вследствие разрушения нити, и опытным путем было определено, насколько сильно мы можем ее раскалить. Нельзя сказать, насколько бы увеличился КПД, если бы нить могла выдерживать накаливание беспредельно, так как исследования в этом направлении могут продолжаться до определенного этапа; но есть причины полагать, что этот фактор возрос бы значительно. Можно улучшить лампу, применив короткую и тонкую угольную нить, но тогда провода подводки должны быть толстыми, и, кроме того, есть несколько других соображений, делающих эту модель непрактичной. Но в такой лампе провода подводки могут быть очень маленькими, преломляющий материал может состоять из образцов, излучающая поверхность которых очень мала, так что меньше энергии потребуется для того, чтобы поддерживать надлежащий уровень нагрева; и вдобавок ко всему материалом накаливания не обязательно должен быть уголь, это может быть смесь оксидов, или можно выбрать иной материал, являющийся плохим проводником или диэлектриком, который может выдерживать высокую температуру.

Всё это указывает на возможность получения большего КПД в такой лампе, чем тот, что можно получить в обычных лампах накаливания. Мой опыт показывает, что образцы могут светиться при меньшем напряжении, чем показывают расчеты, и что образцы можно расположить на большем расстоянии друг от друга. Мы можем свободно предположить, и это возможно, что молекулярная бомбардировка — это важный элемент нагрева, даже если воздух из колбы тщательно откачан, как это делал я; и хотя количество молекул сравнительно невелико, всё же по причине длинного среднего их пути столкновений меньше и молекулы развивают большую скорость, так что эффект нагревания благодаря этому может выражаться гораздо сильнее, чем в опытах Крукса с излучающими веществами.

Но есть вероятность и того, что здесь мы столкнемся с возросшей возможностью потерять заряд в вакууме, когда потенциал быстро меняется, в этом случае нагрев большей частью происходит вследствие волнообразного образования зарядов в нагретом теле. Либо наблюдаемый эффект можно в целом объяснить теми моментами, которые я упоминал выше, вследствие чего образцы нити накаливания, помещенные в вакуум, подобны конденсаторам с поверхностью во много раз большей, чем их геометрические размеры. Ученые до сих пор расходятся во мнении, теряется или нет заряд в абсолютном вакууме или, другими словами, является он проводником или нет. Если первое, тогда тонкая нить, помещенная в абсолютный вакуум и соединенная с источником постоянного тока очень большого напряжения, нагревалась бы и светилась.





Я создал и эксплуатировал много типов ламп, основанных на вышеописанном принципе с преломляющими телами в форме нитей (рисунок 20), или блоков (рисунок 21), и всё еще продолжаю исследования в этом направлении. Совсем нетрудно достичь такой высокой степени нагрева, что обычный уголь плавится и улетучивается. Если бы можно было получить абсолютный вакуум, такая лампа, хотя ее и нельзя эксплуатировать с теми приборами, которые есть в настоящее время, могла бы, при надлежащих условиях, стать осветительным прибором, который никогда не ломается, и имеет гораздо больший КПД, чем обычная лампа накаливания. Такого совершенства, конечно, никогда не достичь, всегда происходит медленное разрушение и постепенное истончение, как у нитей накаливания; но невозможен и преждевременный выход из строя, который вызывается обрывом нити накаливания, особенно когда излучающие предметы в форме блоков.

Когда потенциал быстро меняется, нет необходимости помещать два блока в колбу, нужен только один, как на рисунке 19, или нить, как на рисунке 22. Потенциал в этом случае должен быть гораздо выше, но его легко получить, и к тому же он необязательно опасен.

Когда все остальные показатели равны, лампа доводится до свечения в зависимости от размеров колбы. Если бы можно было получить абсолютный вакуум, размер колбы не имел бы значения, ибо нагрев происходил бы только за счет импульсных зарядов, и вся энергия отдавалась в окружающую среду в форме излучения. Но на практике этого достичь нельзя. В колбе всегда остается газ, и хотя он откачивается максимально возможно, всё же пространство внутри колбы можно рассматривать в качестве проводника, когда применяется высокое напряжение, и я полагаю, что оценивая количество энергии, отдаваемое нитью в окружающую среду, мы должны рассматривать внутреннюю поверхность колбы как одну обкладку конденсатора, а воздух и другие предметы, окружающие колбу, как другую обкладку.

Когда колебания очень малы, нет сомнения, что значительная часть энергии уходит на электризацию окружающего колбу воздуха. Для более полного изучения этого предмета я проводил опыты с крайне высоким потенциалом и низкой частотой. Тогда я обнаружил, что если поднести руку к лампе, когда нить соединена с одним выводом катушки, чувствуются мощные вибрации, которые вызваны притяжением и отталкиванием молекул воздуха, наэлектризованных через стекло. В некоторых случаях, когда процесс происходил очень интенсивно, я слышал звук, происхождение которого должно быть объясняется теми же причинами.

Когда частота низкая, можно получить очень сильный удар током от лампы. В целом, когда присоединяешь лампу или другой предмет определенного размера к выводам катушки, следует опасаться скачка напряжения, так как он может быть вызван просто этим подключением, и напряжение может вырасти в несколько раз по сравнению с первоначальным значением.